Presentation is loading. Please wait.

Presentation is loading. Please wait.

Spinal nerves, cervical, lumbar and sacral plexus

Similar presentations


Presentation on theme: "Spinal nerves, cervical, lumbar and sacral plexus"— Presentation transcript:

1 Spinal nerves, cervical, lumbar and sacral plexus

2 The spinal cord Gross anatomy 3 layers of meninges
Epidural space (fat & vessels) CSF – subarachnoid space Terminates at L1/2 vertebral level (conus medullaris) Dura extends to S2 vertebral level Connects via filum terminale & denticulate ligaments (pia) 31 pairs of spinal nerves (mixed) cauda equina Cervical & lumbar enlargements

3 Lumbar Tap

4 Spinal Cord Anatomy Conus medullaris – terminal portion of the spinal cord Filum terminale – fibrous extension of the pia mater; anchors the spinal cord to the coccyx Denticulate ligaments – delicate shelves of pia mater; attach the spinal cord to the vertebrae Spinal nerves – 31 pairs attach to the cord by paired roots Cervical nerves are named for inferior vertebra All other nerves are named for superior vertebra Cervical and lumbar enlargements – sites where nerves serving the upper and lower limbs emerge Cauda equina – collection of nerve roots at the inferior end of the vertebral canal

5 Cross-Sectional Anatomy of the Spinal Cord
Anterior median fissure – separates anterior funiculi Posterior median sulcus – divides posterior funiculi

6 The 3 Meningeal Layers Dura mater: Arachnoid mater: Pia mater:
outer layer of spinal cord subdural space: between arachnoid mater and dura mater Arachnoid mater: middle meningeal layer subarachnoid space: between arachnoid mater and pia mater filled with cerebrospinal fluid (CSF) Pia mater: inner meningeal layer

7 Structures of the Spinal Cord
Paired denticulate ligaments: extend from pia mater to dura mater stabilize side-to-side movement Blood vessels: along surface of spinal pia mater within subarachnoid space

8 Cross-sectional anatomy
Gray matter (cell bodies, neuroglia, & unmyelinated processes) Posterior horns (sensory, all interneurons) Lateral horns (autonomic, T1-L2) Anterior horns (motor, cell bodies of somatic motor neurons) Spinal roots Ventral (somatic & autonomic motor) Dorsal (DRG)

9 Cross-sectional anatomy
White matter 3 funiculi (posterior, lateral, anterior) Ascending, descending, transverse Consist of “tracts” containing similarly functional axons All tracts are paired Most cross over (decussate) at some point Most exhibit somatotopy (superior part of the tracts are more lateral that inferior body regions) Most consist of a chain of 2 or 3 successive neurons

10 Gray Matter: Organization
Dorsal half – sensory roots and ganglia Ventral half – motor roots Dorsal and ventral roots fuse laterally to form spinal nerves Four zones are evident within the gray matter – somatic sensory (SS), visceral sensory (VS), visceral motor (VM), and somatic motor (SM)

11 White Matter in the Spinal Cord
Fibers run in three directions – ascending, descending, and transversely Divided into three funiculi (columns) – posterior, lateral, and anterior Each funiculus contains several fiber tracts Fiber tract names reveal their origin and destination Fiber tracts are composed of axons with similar functions Pathways decussate (cross-over) Most consist of two or three neurons Most exhibit somatotopy (precise spatial relationships) Pathways are paired (one on each side of the spinal cord or brain)

12 White Matter: Pathway Generalizations

13 3 Connective Tissue Layers
Epineurium: outer layer dense network of collagen fibers Perineurium: middle layer divides nerve into fascicles (axon bundles) Endoneurium: inner layer surrounds individual axons

14 Peripheral Distribution of Spinal Nerves
Each spinal nerve connects to the spinal cord via two medial roots Each root forms a series of rootlets that attach to the spinal cord Ventral roots arise from the anterior horn and contain motor (efferent) fibers Dorsal roots arise from sensory neurons in the dorsal root ganglion and contain sensory (afferent) fibers Figure 13–7a

15 Spinal Nerves: Rami The short spinal nerves branch into three or four mixed, distal rami Small dorsal ramus – to back Larger ventral ramus – to plexuses/intercostals Tiny meningeal branch – to meninges Rami communicantes at the base of the ventral rami in the thoracic region – to/from ANS

16 Nerve Plexuses All ventral rami except T2-T12 form interlacing nerve networks called plexuses Plexuses are found in the cervical, brachial, lumbar, and sacral regions Each resulting branch of a plexus contains fibers from several spinal nerves Fibers travel to the periphery via several different routes Each muscle receives a nerve supply from more than one spinal nerve Damage to one spinal segment cannot completely paralyze a muscle

17 Spinal Nerve Innervation: Back, Anterolateral Thorax, and Abdominal Wall
The back is innervated by dorsal rami via several branches The thorax is innervated by ventral rami T1-T12 as intercostal nerves Intercostal nerves supply muscles of the ribs, anterolateral thorax, and abdominal wall

18 The 4 Major Plexuses of Ventral Rami
Cervical plexus Brachial plexus Lumbar plexus Sacral plexus

19 Cervical Plexus The cervical plexus is formed by ventral rami of C1-C4 (C5) Most branches are cutaneous nerves of the neck, ear, back of head, and shoulders The most important nerve of this plexus is the phrenic nerve The phrenic nerve is the major motor and sensory nerve of the diaphragm

20 Brachial Plexus Formed by C5-C8 and T1 (C4 and T2 may also contribute to this plexus) It gives rise to the nerves that innervate the upper limb

21 Trunks and Cords of Brachial Plexus
Nerves that form brachial plexus originate from: superior, middle, and inferior trunks large bundles of axons from several spinal nerves lateral, medial, and posterior cords smaller branches that originate at trunks

22 Brachial Plexus: Nerves
Axillary – innervates the deltoid and teres minor Musculocutaneous – sends fibers to the biceps brachii and brachialis Median – branches to most of the flexor muscles of forearm Ulnar – supplies the flexor carpi ulnaris and part of the flexor digitorum profundus Radial – innervates essentially all extensor muscles

23 Lumbar Plexus Arises from (T12) L1-L4 and innervates the thigh, abdominal wall, and psoas muscle The major nerves are the femoral and the obturator

24 Sacral Plexus Arises from L4-S4 and serves the buttock, lower limb, pelvic structures, and the perineum The major nerve is the sciatic, the longest and thickest nerve of the body The sciatic is actually composed of two nerves: the tibial and the common fibular (peroneal) nerves

25 Nerve plexuses - Summary
Cervical – C1-C4 Phrenic nerve Brachial – C5 – T1 (roots/trunks/divisions/cords) Axillary, MC, median, ulnar, radial Lumbar – L1-L4 Femoral, obturator Sacral – L4-S4 Sciatic (common peroneal/tibial), pudendal

26 Dermatomes Area of skin innervated by the cutaneous branches of a single spinal nerve. All segments except C1 have dermotomal distribution UE typically from C5-T1 LE typically from L1-S1 Figure 13–8

27 5 Patterns of Neural Circuits in Neuronal Pools
Divergence: spreads stimulation to many neurons or neuronal pools in CNS Convergence: brings input from many sources to single neuron Figure 13–13a

28 5 Patterns of Neural Circuits in Neuronal Pools
Serial processing: moves information in single line Parallel processing: moves same information along several paths simultaneously Figure 13–13c

29 5 Patterns of Neural Circuits in Neuronal Pools
Reverberation: positive feedback mechanism functions until inhibited Figure 13–13e

30 Reflex activity 5 components of a reflex arc Receptor Sensory neuron
Integration center (CNS) Motor neuron Effector

31 4 Classifications of Reflexes
By early development Innate or Acquired By type of motor response Somatic or Visceral By complexity of neural circuit Monosynaptic or Polysynaptic By site of information processing Spinal or Cranial

32 Spinal Reflexes Range in increasing order of complexity:
monosynaptic reflexes polysynaptic reflexes intersegmental reflex arcs: many segments interact produce highly variable motor response

33 Monosynaptic Reflexes
Have least delay between sensory input and motor output: e.g., stretch reflex (such as patellar reflex) Completed in 20–40 msec

34 Muscle Spindles The receptors in stretch reflexes
Bundles of small, specialized intrafusal muscle fibers: innervated by sensory and motor neurons Surrounded by extrafusal muscle fibers: which maintain tone and contract muscle

35 Postural Reflexes Postural reflexes:
stretch reflexes maintain normal upright posture Stretched muscle responds by contracting: automatically maintain balance

36 Polysynaptic Reflexes
More complicated than monosynaptic reflexes Interneurons control more than 1 muscle group Produce either EPSPs or IPSPs

37 The Tendon Reflex Prevents skeletal muscles from:
developing too much tension tearing or breaking tendons Sensory receptors unlike muscle spindles or proprioceptors

38 Withdrawal Reflexes Move body part away from stimulus (pain or pressure): e.g., flexor reflex: pulls hand away from hot stove Strength and extent of response: depends on intensity and location of stimulus

39 Reciprocal Inhibition
For flexor reflex to work: the stretch reflex of antagonistic (extensor) muscle must be inhibited (reciprocal inhibition) by interneurons in spinal cord

40 Crossed Extensor Reflexes
Occur simultaneously, coordinated with flexor reflex e.g., flexor reflex causes leg to pull up: crossed extensor reflex straightens other leg to receive body weight maintained by reverberating circuits

41 Integration and Control of Spinal Reflexes
Though reflex behaviors are automatic: processing centers in brain can facilitate or inhibit reflex motor patterns based in spinal cord Higher centers of brain incorporate lower, reflexive motor patterns Automatic reflexes: can be activated by brain as needed use few nerve impulses to control complex motor functions walking, running, jumping

42 Superficial reflexes Stroking of the skin elicits muscle contraction
Involves functional upper motor pathways as well as cord level reflex arcs Plantar reflex (L4-S2)…Babinski is normal in infants Usually indicative of CNS damage in adults Abdominal reflex (T8-T12) Absent with corticospinal lesion

43 Spinal Cord Trauma: Transection
Cross sectioning of the spinal cord at any level results in total motor and sensory loss in regions inferior to the cut Paraplegia – transection between T1 and L1 Quadriplegia – transection in the cervical region

44 Spinal Nerves Spinal nerves attach to the spinal cord via roots
Dorsal root Has only sensory neurons Attached to cord via rootlets Dorsal root ganglion Bulge formed by cell bodies of unipolar sensory neurons Ventral root Has only motor neurons No ganglion - all cell bodies of motor neurons found in gray matter of spinal cord Spinal Nerves

45 Spinal Nerves 31 pair Connect to the spinal cord
each contains thousands of nerve fibers All are mixed nerves have both sensory and motor neurons) Connect to the spinal cord Named for point of issue from the spinal cord 8 pairs of cervical nerves (C1-C8) 12 pairs of thoracic nerves (T1-T12) 5 pairs of lumbar nerves (L1-L5) 5 pairs of sacral nerves (S1-S5) 1 pair of coccygeal nerves (Co1)

46 Formation of Rami Rami are lateral branches of a spinal nerve
Rami contain both sensory and motor neurons Two major groups Dorsal ramus Neurons innervate the dorsal regions of the body Ventral ramus Larger Neurons innervate the ventral regions of the body Braid together to form plexuses (plexi)

47 Dermatomal Map Spinal nerves indicated by capital letter and number
Dermatomal map: skin area supplied with sensory innervation by spinal nerves

48 Introduction to Nerve Plexuses
A network of ventral rami Ventral rami (except T2-T12) Branch and join with one another Form nerve plexuses In cervical, brachial, lumbar, and sacral regions No plexus formed in thoracic region of s.c.

49 The Cervical Plexus Buried deep in the neck
Under the sternocleidomastoid muscle Formed by ventral rami of first four cervical nerves Most are cutaneous nerves Some innervate muscles of the anterior neck Phrenic nerve – the most important nerve of the cervical plexus

50 Branches of Spinal Nerves
Dorsal Ramus Neurons within muscles of trunk and back Ventral Ramus (VR) Braid together to form plexuses Cervical plexus - VR of C1-C4 Brachial plexus - VR of C5-T1 Lumbar plexus - VR of of L1-L4 Sacral plexus - VR of L4-S4 Coccygeal plexus -VR of S4 and S5 Communicating Rami: communicate with sympathetic chain of ganglia Covered in ANS unit

51 Cervical Plexus Buried deep in the neck
Under the sternocleidomastoid muscle Formed by ventral rami of first four cervical nerves (C1-C4) Most are cutaneous nerves Some innervate muscles of the anterior neck, posterior portion of head Phrenic nerve – the most important nerve of the cervical plexus Phrenic nerve Innervate diaphragm

52 Brachial Plexus Formed by ventral rami of spinal nerves C5-T1
Five ventral rami form three trunks that separate into six divisions that then form cords that give rise to nerves Major nerves Axillary Radial Musculocutaneous Ulnar Median

53 Brachial Plexus: Axillary Nerve
Motor neurons stimulate Deltoid, teres minor Abducts arm- deltoid Laterally rotate arm-teres minor Sensory neurons Skin: inferior lateral shoulder

54 Brachial Plexus: Radial Nerve
Motor components stimulate Posterior muscles of arm, forearm, and hand Triceps, supinator, brachioradialis, ECR, ECU, extensor digitorum Cause extension movements at elbow and wrist, thumb movements Sensory components Skin on posterior surface of arm and forearm, hand Damage due to compression results in crutch paralysis Major symptom is ‘wrist drop’ Failure of extensors of wrist and fingers to function Elbow, wrist, and fingers constantly flexed

55 Brachial Plexus: Musculocutaneous Nerve
Motor components stimulate Flexors in anterior upper arm: (biceps brachii, brachialis) Cause flexion movements at shoulder and elbow Sensory: Skin along lateral surface of forearm

56 Brachial Plexus: Ulnar Nerve
Motor components stimulate Flexor muscles in anterior forearm (FCU, FDP, most intrinsic muscles of hand) Results in wrist and finger flexion Sensory: Skin on medial part of hand Most easily damaged Hitting the “funny bone” excites it

57 Brachial Plexus: Median Nerve
Motor components stimulate All but one of the flexors of the wrist and fingers, and thenar muscles at base of thumb (Palmaris longus, FCR, FDS, FPL, pronator) Causes flexion of the wrist and fingers and thumb Sensory components Stimulate skin on lateral part of hand Damaged in carpal tunnel and suicide attempts

58 Lumbosacral Plexus Lumbar plexus: formed by ventral rami of L1-L4
Major nerves include Femoral nerve Obturator nerve Sacral plexus: formed by ventral rami of L4-S4 Major nerve = Sciatic nerve (actually 2 nerves in one sheath) Tibial nerve Common fibular (peroneal) n. Usually considered together because of their close relationship

59 Lumbar Plexus:Obturator Nerve
Motor components Innervate adductor group and gracilis in thigh Causes adduction of the thigh and knee (gracilis) Sensory: Skin of the superior middle side of thigh

60 Femoral Nerve Motor components
Innervates flexors of hip Iliopsoas (Iliacus and psoas), rectus femoris Cause flexion of the hip Innervates extensors of knee Quadriceps group-Vastus and rectus femoris Cause extension of the knee Sensory: Skin- anterior and lateral thigh; medial leg and foot

61 Sciatic Nerve Thickest and longest nerve of the body
Composed of 2 nerves in one sheath Tibial nerve Common fibular nerve Leaves pelvis via greater sciatic notch Courses deep to gluteus and enters posterior thigh just medial to the hip joint The 2 divisions diverge just above the knee. Innervates posterior thigh and entire lower leg

62 Sciatic Branches: Tibial Nerve
Innervates Hamstring muscles knee flexors, hip extensors Posterior leg muscles gastrocnemius, soleus plantar flexors FDL, FHL toe flexors Branches in foot to form medial plantar nerve lateral plantar nerve If injured, paralyzed calf muscles cannot plantar flex foot; shuffling gait develops

63 Common Fibular (Peroneal) Nerve
Branches are deep and superficial fibular (peroneal) nerves Innervates anterior and lateral muscles of the leg and foot (extensors that dorsiflex the foot- Tibialis anterior, EDL, EHL) Skin distribution: lateral and anterior leg and dorsum of the foot susceptible to injury because of its superficial location at the head and neck of the fibula Foot drop (unable to hold foot horizontal) Toes drag while walking

64 Other Nerves of the Lumbosacral Plexus
Nerves that innervate the skin of the suprapubic area, external genitalia, superior medial thigh, posterior thigh Iliohypogastric nerve Innervates muscles of abdominal wall and pubic region Genitofemoral nerve Skin of scrotum (males) and labia (females); inferior abdominal muscles Pudendal nerve Innervates muscles and skin of the perineum (see Fig 10.21, p. 346) region encompasssing external genitalia and anus external anal sphincter Stimulates muscle involved in developing an erection Involved in voluntary control of urination the “shameful” nerve

65 Coccygeal Plexus S4-S5; coccygeal nerve Muscles of pelvic floor
Sensory information from skin over coccyx

66 The Autonomic Nervous System

67 The Autonomic Nervous System
Visceral sensory & Visceral motor

68 Autonomic nervous system
The autonomic nervous system is the subdivision of the peripheral nervous system that regulates body activities that are generally not under conscious control Visceral motor innervates non-skeletal (non-somatic) muscles Visceral sensory will be covered later

69 Visceral motor innervates non-skeletal (non-somatic) muscles
To repeat… ANS is the subdivision of the peripheral nervous system that regulates body activities that are generally not under conscious control Visceral motor innervates non-skeletal (non-somatic) muscles Composed of a special group of neurons serving: Cardiac muscle (the heart) Smooth muscle (walls of viscera and blood vessels) Internal organs Skin

70 Autonomic system: chains of two motor neurons
Basic anatomical difference between the motor pathways of the voluntary somatic nervous system (to skeletal muscles) and those of the autonomic nervous system Somatic division: Cell bodies of motor neurons reside in CNS (brain or spinal cord) Their axons (sheathed in spinal nerves) extend all the way to their skeletal muscles Autonomic system: chains of two motor neurons 1st = preganglionic neuron (in brain or cord) 2nd = gangionic neuron (cell body in ganglion outside CNS) Slower because lightly or unmyelinated (see next diagram)

71 Axon of 2nd (ganglionic) neuron extends to the organ it serves
Axon of 1st (preganglionic) neuron leaves CNS to synapse with the 2nd (ganglionic) neuron Axon of 2nd (ganglionic) neuron extends to the organ it serves Diagram contrasts somatic (lower) and autonomic: autonomic this dorsal root ganglion is sensory somatic Note: the autonomic ganglion is motor

72 Divisions of the autonomic nervous system (visceral motor part of it)
Parasympathetic division Sympathetic division

73 Divisions of the autonomic nervous system
Parasympathetic division Sympathetic division Serve most of the same organs but cause opposing or antagonistic effects Parasysmpathetic: routine maintenance “rest &digest” Sympathetic: mobilization & increased metabolism “fight, flight or fright” or “fight, flight or freeze”

74 Where they come from Sympathetic: Parasympathetic: thoracolumbar
craniosacral Sympathetic: thoracolumbar

75 Parasympathetic nervous system “rest & digest”
Also called the craniosacral system because all its preganglionic neurons are in the brain stem or sacral levels of the spinal cord Cranial nerves III,VII, IX and X In lateral horn of gray matter from S2-S4 Only innervate internal organs (not skin) Acetylcholine is neurotransmitter at end organ as well as at preganglionic synapse: “cholinergic”

76 Parasympathetic continued
Cranial outflow III - pupils constrict VII - tears, nasal mucus, saliva IX – parotid salivary gland X (Vagus n) – visceral organs of thorax & abdomen: Stimulates digestive glands Increases motility of smooth muscle of digestive tract Decreases heart rate Causes bronchial constriction Sacral outflow (S2-4): form pelvic splanchnic nerves Supply 2nd half of large intestine Supply all the pelvic (genitourinary) organs

77 Parasympathetic (only look at this if it helps you)

78 Sympathetic nervous system “fight, flight or fright”
Also called thoracolumbar system: all its neurons are in lateral horn of gray matter from T1-L2 Lead to every part of the body (unlike parasymp.) Easy to remember that when nervous, you sweat; when afraid, hair stands on end; when excited blood pressure rises (vasoconstriction): these sympathetic only Also causes: dry mouth, pupils to dilate, increased heart & respiratory rates to increase O2 to skeletal muscles, and liver to release glucose Norepinephrine (aka noradrenaline) is neurotransmitter released by most postganglionic fibers (acetylcholine in preganglionic): “adrenergic”

79 Sympathetic nervous system continued
Regardless of target, all begin same Preganglionic axons exit spinal cord through ventral root and enter spinal nerve Exit spinal nerve via communicating ramus Enter sympathetic trunk/chain where postganglionic neurons are Has three options…

80 Options of preganglionic axons in sympathetic trunk
(see next slides for drawing examples) Synapse on postganglionic neuron in chain ganglion then return to spinal nerve and follow its branch to the skin Ascend or descend within sympathetic trunk, synapse with a posganglionic neuron within a chain ganglion, and return to spinal nerve at that level and follow branches to skin Enter sympathetic chain, pass through without synapsing, form a splanchnic nerve that passes toward thoracic or abdominal organs These synapse in prevertebral ganglion in front of aorta Postganglionic axons follow arteries to organs

81 Synapse in chain ganglia at same level or different level

82 Pass through ganglia and synapse in prevertebral ganglion

83 Sympathetic

84 Adrenal gland is exception
On top of kidneys Adrenal medulla (inside part) is a major organ of the sympathetic nervous system

85 Adrenal gland is exception
Synapse in gland Can cause body-wide release of epinephrine aka adrenaline and norepinephrine in an extreme emergency (adrenaline “rush” or surge)

86 Summary

87 Visceral sensory system
Gives sensory input to autonomic nervous system

88 Visceral sensory neurons
Monitor temperature, pain, irritation, chemical changes and stretch in the visceral organs Brain interprets as hunger, fullness, pain, nausea, well-being Receptors widely scattered – localization poor (e.g. which part is giving you the gas pain?) Visceral sensory fibers run within autonomic nerves, especially vagus and sympathetic nerves Sympathetic nerves carry most pain fibers from visceral organs of body trunk Simplified pathway: sensory neurons to spinothalamic tract to thalamus to cerebral cortex Visceral pain is induced by stretching, infection and cramping of internal organs but seldom by cutting (e.g. cutting off a colon polyp) or scraping them

89 Referred pain: important to know
Plus left shoulder, from spleen Pain in visceral organs is often perceived to be somatic in origin: referred to somatic regions of body that receive innervation from the same spinal cord segments Anterior skin areas to which pain is referred from certain visceral organs

90 Visceral sensory and autonomic neurons participate in visceral reflex arcs
Many are spinal reflexes such as defecation and micturition reflexes Some only involve peripheral neurons: spinal cord not involved (not shown)* *e.g. “enteric” nervous system: 3 neuron reflex arcs entirely within the wall of the gut

91 Central control of the Autonomic NS
Amygdala: main limbic region for emotions -Stimulates sympathetic activity, especially previously learned fear-related behavior -Can be voluntary when decide to recall frightful experience - cerebral cortex acts through amygdala -Some people can regulate some autonomic activities by gaining extraordinary control over their emotions Hypothalamus: main integration center Reticular formation: most direct influence over autonomic function

92 Autonomic Nervous System
Makes all routine adjustments in physiological systems. The ANS pathway from the CNS to the effector always involves 2 neurons synapsing in an autonomic ganglion Human Anatomy 5th ed. 2005 Benjamin Cummings

93 ANS Preganglionic (neuron #1) – cell body is in the CNS, axon extends to the ganglion outside the CNS Postganglionic (neuron #2) – cell body is in the ganglion, axon extends to the visceral effector Human Anatomy 5th ed. 2005 Benjamin Cummings

94 Nerve Fibers of the ANS Preganglionic (neuron #1)
Always myelinated Neurotransmitter is always ACh Postganglionic (neuron #2) Always nonmyelinated Neurotransmitter is Ach or norepinephrine Human Anatomy 5th ed. 2005 Benjamin Cummings

95 Human Anatomy 5th ed. 2005 Benjamin Cummings

96 Subdivisions of the ANS
Sympathetic Division Fight-or-flight Parasympathetic Division Rest-and-digest These divisions are anatomically distinct Human Anatomy 5th ed. 2005 Benjamin Cummings

97 Sympathetic Sympathetic division (thoracolumbar)
Cell bodies for all the neurons #1 reside in the thoracic and lumbar portions of the spinal cord. T1 – L2 Human Anatomy 5th ed. 2005 Benjamin Cummings

98 Sympathetic Stimulates heart beat tissue metabolism,
increases alertness, prepares the body to deal with emergencies (“fight or flight” division) Human Anatomy 5th ed. 2005 Benjamin Cummings

99 T1-L2 Human Anatomy 5th ed. 2005 Benjamin Cummings

100 Parasympathetic Parasympathetic division (craniosacral)
Cell bodies reside in the brain stem (cranial nerves) or in the sacral portion of the spinal cord. Human Anatomy 5th ed. 2005 Benjamin Cummings

101 Cranial & Sacral Human Anatomy 5th ed. 2005 Benjamin Cummings

102 Parasympathetic Slows the heart rate, inhibits senses,
prepares the body for rest and relaxation; (“rest and digest” division). Human Anatomy 5th ed. 2005 Benjamin Cummings

103 The Sympathetic Division
Human Anatomy 5th ed. 2005 Benjamin Cummings

104 Sympathetic Chain Ganglia
Synapses of neurons #1 and #2 are in a chain of ganglia that run alongside the spinal cord Extends on both sides of the vertebral column Carries preganglionic fibers and cell bodies of postganglionic neurons Human Anatomy 5th ed. 2005 Benjamin Cummings

105 Ganglia Human Anatomy 5th ed. 2005 Benjamin Cummings

106 Anatomy of the chain Rami communicantes from the spinal nerves connect to the chain Human Anatomy 5th ed. 2005 Benjamin Cummings

107 Human Anatomy 5th ed. 2005 Benjamin Cummings

108 A closer look at spinal nerves
Human Anatomy 5th ed. 2005 Benjamin Cummings

109 Routes of Preganglionic Axons
Cell bodies of neurons #1 lie in the lateral gray horns of the spinal cord The axons of neurons #1 leave the spinal cord via the ventral root These axons pass to the spinal nerve Axons leave the spinal nerve via the white branches (rami communicantes) Connect with the sympathetic chain ganglia Human Anatomy 5th ed. 2005 Benjamin Cummings

110 Routes of Preganglionic Axons
There are 3 possible routes that sympathetic neurons may follow Possibility #1: synapses within the ganglion at that level and Second neuron leaves at that level via the gray ramus communicans, exits to the visceral effector Human Anatomy 5th ed. 2005 Benjamin Cummings

111 Human Anatomy 5th ed. 2005 Benjamin Cummings

112 Routes of Preganglionic Axons
Possibility #2: neuron #1 goes up or down the chain and synapses at some other level. Second neuron: leaves at that other level via the gray ramus communicantes, and exits to the visceral effector. Human Anatomy 5th ed. 2005 Benjamin Cummings

113 Human Anatomy 5th ed. 2005 Benjamin Cummings

114 Routes of Preganglionic Axons
Possibility #3: neuron #1 does not synapse in the chain (exception!!) but exits and synapses in a collateral ganglion near a major blood vessel. Neuron #2 travels from that ganglion to the visceral effector. Human Anatomy 5th ed. 2005 Benjamin Cummings

115 Human Anatomy 5th ed. 2005 Benjamin Cummings

116 Where are the Collateral Ganglia ?
Location –Near a major blood vessel Celiac ganglion Innervates upper abdominal viscera Superior mesenteric Innervates middle abdominal viscera Inferior mesenteric Innervates lower abdominal & pelvic organs Human Anatomy 5th ed. 2005 Benjamin Cummings

117 The Adrenal Medulla Yet another type of innervation:
Going to the adrenal medulla No synapse in ganglia No synapse in collateral ganglia YES synapse in the adrenal medulla Human Anatomy 5th ed. 2005 Benjamin Cummings

118 Human Anatomy 5th ed. 2005 Benjamin Cummings

119 Adrenal Medulla Only preganglionic neurons are in this pathway
Neuron #1 stimulates the medulla, The medulla releases norepinephrine and epinephrine (adrenaline) to blood Human Anatomy 5th ed. 2005 Benjamin Cummings

120 Adrenal Medulla Human Anatomy 5th ed. 2005 Benjamin Cummings

121 Effects of Sympathetic Stimulation
Widespread The sympathetic chain allows one preganglionic fiber to synapse with many postganglionic neurons Enhanced & prolonged by the adrenal medulla Human Anatomy 5th ed. 2005 Benjamin Cummings

122 Convergence See heart Human Anatomy 5th ed. 2005 Benjamin Cummings

123 Neurotransmitters of Sympathetic Division
Preganglionic fibers release acetylcholine (Ach) Therefore they are called: Cholinergic Postganglionic fibers (most) release norepinephrine (NE) (=noradrenaline) Adrenergic Adrenal medulla releases norepinephrine and epinephrine (adrenalin) Human Anatomy 5th ed. 2005 Benjamin Cummings

124 Human Anatomy 5th ed. 2005 Benjamin Cummings

125 Functions of the Sympathetic Division
Heart: increases rate Lung bronchioles: dilates bronchioles Salivary glands: produce viscous fluid Stomach: decreases motility Pupil: dilates Sweat glands: produce secretions Human Anatomy 5th ed. 2005 Benjamin Cummings

126 Summary of Sympathetic Division
Cell bodies are found in the thoracic and lumbar portions of the spinal cord Preganglionic fibers are short, connect to the sympathetic chain, and synapse with long postganglionic fibers Preganglionic fibers produce ACh, postganglionic fibers produce NE or Ach “Fight or flight” division Human Anatomy 5th ed. 2005 Benjamin Cummings

127 Human Anatomy 5th ed. 2005 Benjamin Cummings

128 The Parasympathetic Division
Human Anatomy 5th ed. 2005 Benjamin Cummings

129 Parasympathetic division
Cell bodies are in the brain or in the gray matter of the spinal cord (sacral region) Neurons #1 exit the cranial region through cranial nerves 3, 7, 9, & 10 or Neurons #1 exit the spinal cord through the sacral spinal nerves Human Anatomy 5th ed. 2005 Benjamin Cummings

130 Parasympathetic Human Anatomy 5th ed. 2005 Benjamin Cummings

131 Parasympathetic Neurons #1 are long and synapse with neurons #2 (short) in ganglia Ganglia are found on, or near the visceral effector Human Anatomy 5th ed. 2005 Benjamin Cummings

132 Parasympathetic Human Anatomy 5th ed. 2005 Benjamin Cummings

133 Parasympathetic ganglia
Human Anatomy 5th ed. 2005 Benjamin Cummings

134 Neurotransmitter of Parasympathetic Division
Preganglionic fibers: Acetylcholine Postganglionic fibers: Acetylcholine Human Anatomy 5th ed. 2005 Benjamin Cummings

135 Human Anatomy 5th ed. 2005 Benjamin Cummings

136 General Functions of the Parasympathetic
Prepares the individual for rest and repose “Rest & digest” division Human Anatomy 5th ed. 2005 Benjamin Cummings

137 Effects on various organs:
Heart: decreases rate Lung bronchioles: constricts bronchioles Salivary glands: produces watery fluid fluid Stomach: increases motility Pupil: constricts Sweat glands: reduces secretions Human Anatomy 5th ed. 2005 Benjamin Cummings

138 Summary of the Parasympathetic Division
Cell bodies are found in the brain and in the sacral region of the spinal cord Preganglionic fibers are long and synapse with short postganglionic fibers on or near the target viscera Both preganglionic and postganglionic fibers produce Ach “Rest & digest” division Human Anatomy 5th ed. 2005 Benjamin Cummings

139 Relationship Between the Sympathetic and Parasympathetic Divisions
Most organs receive dual innervation It is a tug of war between the two Human Anatomy 5th ed. 2005 Benjamin Cummings

140 ANS either increases excitation or inhibits the activity
Ex. Sympathetic fibers increase heart rate, parasympathetic fibers decrease heart rate. Homeostasis comes from the balance of the two. Human Anatomy 5th ed. 2005 Benjamin Cummings

141 ANS either increases excitation or inhibits the activity
Ex.#2 Sympathetic fibers decreases stomach motility. Parasympathetic fibers increase stomach motitlity Human Anatomy 5th ed. 2005 Benjamin Cummings

142 Parasympathetic innervation
The cranial nerve fibers involved are motor - control smooth muscle & glands in the upper body Cranial nerve #3 – lens & pupil Cranial nerve #7 – lacrimal glands, submandibular & submaxillary glands (salivary) Cranial nerve #9 – parotid gland (salivary) Cranial nerve #10 - viscera of thorax & abdomen Sacral nerves innervate the kidneys, colon, & sex organs Human Anatomy 5th ed. 2005 Benjamin Cummings


Download ppt "Spinal nerves, cervical, lumbar and sacral plexus"

Similar presentations


Ads by Google