Presentation is loading. Please wait.

Presentation is loading. Please wait.

Шестая ежегодная конференция "Физика плазмы в солнечной системе" 14–18 февраля 2011 г. ИКИ РАН, Москва Различные подходы к моделированию ионосферных эффектов.

Similar presentations


Presentation on theme: "Шестая ежегодная конференция "Физика плазмы в солнечной системе" 14–18 февраля 2011 г. ИКИ РАН, Москва Различные подходы к моделированию ионосферных эффектов."— Presentation transcript:

1 Шестая ежегодная конференция "Физика плазмы в солнечной системе" 14–18 февраля 2011 г. ИКИ РАН, Москва Различные подходы к моделированию ионосферных эффектов геомагнитных бурь М.В. Клименко 1,2 ; В.В. Клименко 1, К.Г. Ратовский 3, Л.П. Гончаренко 4 1 Западное отделение ИЗМИРАН им. Н.В. Пушкова, Калининград, Россия, vvk_48@mail.ru 2 Калининградский государственный технический университет, Калининград, Россия 3 Институт солнечно-земной физики СО РАН, Иркутск, Россия 4 Обсерватория Хайстек, Массачусетский технологический институт, Вестфорд, Массачусетс, США

2  Mayr H.G., Volland H. (1973) Magnetic Storm Characteristics of the Thermosphere. J. Geophys. Res., 78(13), 2251–2264.  Mayr H.G., Hedin A.E. (1977) Significance of Large-Scale Circulation in Magnetic Storm Characteristics With Application to AE-C Neutral Composition Data. J. Geophys. Res., 82(7), 1227–1234.  Namgaladze A.A., Zakharov L.P., Namgaladze A.N. (1981) Numerical modeling of the ionospheric storms. Geomagn. Aeron., 21(2), 259–265 (in Russian).  Maeda S., Fuller-Rowell T.J., Evans D.S. (1989) Zonally Averaged Dynamical and Compositional Response of the Thermosphere to Auroral Activity During September 18-24, 1984. J. Geophys. Res., 94(A12), 16869–16883.  Sojka J.J., Schunk R.W., Denig W.F. (1994) Ionospheric response to the sustained high geomagnetic activity during the March’89 great storm. J. Geophys. Res., 99(A11), 21341–21352.  Reddy C.A., Mayr H.G. (1998) Storm-time penetration to low latitudes of magnetospheric-ionospheric convection and convection-driven thermospheric winds. Geophys. Res. Lett., 25(16), 3075–3078.  Förster M., Namgaladze A.A., Yurik R.Y. (1999) Thermospheric composition changes deduced from geomagnetic storm modeling. Geophys. Res. Lett., 26(16), 2625–2628.  Maruyama N., Richmond A.D., Fuller-Rowell T.J., Codrescu M.V., Sazykin S., Toffoletto F.R., Spiro R.W., Millward G.H. (2005) Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophys. Res. Lett., 32, L17105, doi:10.1029/2005GL023, 763.  Fuller-Rowell T., Codrescu M., Maruyama N., Fredrizzi M., Araujo-Pradere E., Sazykin S., Bust G. (2007) Observed and modeled thermosphere and ionosphere response to superstorms. Radio Sci., 42, RS4S90, doi:10.1029/2005RS003392.  Lu G., Goncharenko L.P., Richmond A.D., Roble R.G., Aponte N. (2008) A dayside ionospheric positive storm phase driven by neutral winds. J. Geophys. Res., 113, A08304, doi:10.1029/2007JA012, 895  Balan N., Shiokawa K., Otsuka Y., Kikuchi T., Vijaya Lekshmi D., Kawamura S., Yamamoto M., and Bailey G.J. (2010) A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes. J. Geophys. Res. 115, A02304, doi:10.1029/2009JA014515.

3 Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) was developed in West Department of IZMIRAN. The model GSM TIP was described in detail in Namgaladze et al., 1988, 1990, 1991. Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) was developed in West Department of IZMIRAN. The model GSM TIP was described in detail in Namgaladze et al., 1988, 1990, 1991. The model is added by the new block of electric field calculation Klimenko et al., 2006a,b, 2007. The model is added by the new block of electric field calculation Klimenko et al., 2006a,b, 2007. Model GSM TIP Brief Description Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Surotkin, V.A., Glushenko, T.A., Naumova, N.M. Pure and Applied Geophysics (PAGEOPH) 127, No. 2/3, 219–254, 1988. Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Surotkin, V.A., Glushchenko, T.A., Naumova, N.M. Geomagnetism and Aeronomy 30, No. 4, 612–619, 1990. Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Surotkin, V.A., Naumova, N.M. J. Atmos. Terr. Phys. 53, 1113–1124, 1991. Klimenko, M.V., Klimenko, V.V., Bryukhanov, V.V. Geomagn. Aeron. 46, No. 4, 457– 466, doi: 10.1134/S0016793206040074, 2006a. Клименко В.В., Клименко М.В., Брюханов В.В. Математическое моделирование 8, № 3, 77-92, 2006b. Klimenko, M.V., Klimenko, V.V., Bryukhanov, V.V. Adv. Radio Sci. 5, 385–392, 2007.

4 Модель рассчитывает зависящие от времени глобальные трехмерные распределения температуры, состава (O 2, N 2, O) и вектора скорости движения нейтрального газа, концентрации, температуры и векторных скоростей атомарных (O +, H + ) ионов, электронов и суммы молекулярных ионов O 2 + и NO +, а также двумерного распределения потенциала электрического поля динамо и магнитосферного происхождения. Модель основана на численном интегрировании системы квазигидродинамических уравнений непрерывности, движения и теплового баланса для нейтральных и заряженных частиц холодной околоземной плазмы совместно с уравнением для потенциала электрического поля. Геомагнитное поле Земли аппроксимируется наклоненным диполем. При этом учитывается несовпадение географической и геомагнитной осей. Уравнения для нейтральных частиц и молекулярных ионов интегрируются в интервале высот 80 – 520 км в сферической геомагнитной системе координат. Уравнения для атомарных ионов и электронов интегрируются вдоль силовых линий геомагнитного поля в дипольной системе координат с учетом электромагнитного дрейфа от 175 км над поверхностью Земли до геоцентрического расстояния ~15 земных радиусов. В модели используется пространственная сетка с шагами 5° по широте и 15° по долготе, в которой рассчитываются параметры нейтральной атмосферы и двумерное распределение электрического потенциала, а также заданы основания силовых линий геомагнитного поля на высоте 175 км. При интегрировании моделирующих уравнений используется переменный шаг по вертикали, растущий с высотой. Все уравнения модели решаются методом конечных разностей. Начальные условия для решения системы моделирующих уравнений выбирались произвольным образом, и расчеты проводились с шагом 2 мин до получения квазипериодических решений. В качестве нижних граничных условий использовались условия фотохимического и теплового равновесия.

5 Theoretical Formulation of the Model GSM TIP Block of the Thermosphere and D-, E-, F1-Region of Ionosphere 80  h  520 km in spherical geomagnetic coordinate system (r, Θ, Λ) ΔΘ = 5 °, ΔΛ = 15°, Δr – variable (Δr min = 2 km at height of 80 km) Thermosphere Output: neutral temperature T, mass density ρ, neutral species velocity vector, and the main neutral densities n(N 2 ), n(O 2 ), and n(O) continuity equation for mass density continuity equations for the main neutral species continuity equations for the main neutral species equation equation of motion for the horizontal components of the mean mass velocity of neutral gas thermal balance equation for the thermal balance equation for the neutral gas neutral gas diffusive molecular and turbulent velocities

6 at h = 80 km (without tides) Boundary conditions: n n, T – empirical values n n – are in diffusive equilibrium n n – are in diffusive equilibrium at h = 520 km D-, E-, F1-Region of Ionosphere Output: n(NO + ), n(O 2 + ), molecular ion temperature T i, electron temperature T e, ion velocity vector continuity equation for molecular ions (n i = n(NO + )+n(O 2 + )) thermal balance equation for molecular ions thermal balance equation for molecular ions momentum momentum equation for molecular ions momentum equation for electrons where

7 F2-region of Ionosphere and ProtonosphereBlock F2-region of Ionosphere and Protonosphere Block From 175 km up to a maximal distance of r = 15 R E in magnetic dipole coordinate system (q, v, u): q = (R E /(R E +h)) 2 cosΘ, v = Λ, u = (R E /(R E +h)) sin 2 Θ q ort is directed along geomagnetic field line from south to north hemisphere, v ort is directed along geomagnetic parallel and u ort is equatorward transversely to geomagnetic field line in geomagnetic longitudinal plane ΔΘ = 5 °, ΔΛ = 15°, step along geomagnetic field lines is variable Output: ion and electron temperatures T i,e, atomic ion and electron velocity vector, and ion and electron densities n(O+), n(H+), n e continuity equation for atomic ions momentum equation for atomic ions and electrons transversely to geomagnetic field

8 momentum equation for atomic ions along geomagnetic field energy equation for atomic ions and electrons along geomagnetic field at h = 175 km; Boundary conditions: n i, T i,e in photochemical and thermal equilibrium n i = 0, at r = 15R E inside of polar caps Electric Field ComputationBlock Electric Field Computation Block ΔΘ = 5 °, ΔΛ = 15° Output: electric field potential of dynamo and magnetospheric origin zonal current surface and linear density

9 Total Current Density Conservation in the Ionosphere where – total current density in the Earth’s ionosphere ionosphere – tensor of ionospheric conductivity, – electric field of magnetospheric convection, – vector of thermospheric wind velocity, – vector of geomagnetic field induction. The three-dimensional equation of the conservation of the full current in the ionosphere is carried out by its reduction to two-dimensional by integration on thickness of a current-carrying layer of the ionosphere along geomagnetic field lines, along which electric field does not vary., where – electric field potential

10 was previously used for description of: the: ionosphere behavior during quiet geomagnetic conditions Klimenko et al., 1991, 1998, 2006a,b, 2007; Korenkov et al., 1993, 1996a, 1997b, 1998b, 2002, 2009a,b; Surotkin et al., 2007 the topside ionosphere behavior Klimenko et al., 1992, 2008; Korenkov et al., 1997a, 1998a, 2010 ionosphere behavior during substorms Namgaladze et al., 1996; Korenkov et al., 1996b; Klimenko et al., 2006c-e; Klimenko and Klimenko, 2009b ionosphere behavior duringsolar eclipses Bessarab et al,. 2002; Korenkov et al., 2003a- c; Klimenko et al., 2007; Klimenko and Klimenko, 2009c ionosphere behavior during solar eclipses Bessarab et al,. 2002; Korenkov et al., 2003a- c; Klimenko et al., 2007; Klimenko and Klimenko, 2009c seismo-ionospheric effects prior to the earthquake Namgaladze et al., 2009; Klimenko and Klimenko, 2009d; Klimenko et al., 2010c ionospheric effects of geomagnetic storm Klimenko et al., 2009a, 2010b, 2011a-c; Klimenko and Klimenko, 2010a,b The GSM TIP model

11 Bessarab, F.S., Korenkov, Yu.N., Klimenko, V.V., Natsvalyan, N.S. Geomagnetism and aeronomy 42, No.5, 644–651, 2002. Klimenko, M.V., Klimenko, V.V., Bryukhanov, V.V. Geomagn. Aeron. 46, No. 4, 457– 466, doi: 10.1134/S0016793206040074, 2006a. Клименко В.В., Клименко М.В., Брюханов В.В. Математическое моделирование 8, № 3, 77-92, 2006b. Klimenko, M.V., Klimenko, V.V., Bryukhanov, V.V. In Proceedings of the 6th International Conference “Problems of Geocosmos”. St. Petersburg, Russia, Petrodvorets, May 23–27, 2006. St. Petersburg, 83–86, 2006c. Klimenko, M.V., Klimenko, V.V., Bryukhanov, V.V. In Proceedings of the 29th Annual Seminar “Physics of Auroral Phenomena”, Apatity, February 27 – March 3, 2006. Apatity, 36–39, 2006d. Klimenko, M.V., Klimenko, V.V., Bryukhanov, V.V. In Proceedings of the 29th Annual Seminar “Physics of Auroral Phenomena”, Apatity, February 27 – March 3, 2006. Apatity, 31–35, 2006e. Klimenko, M.V., Klimenko, V.V., Bryukhanov, V.V. Adv. Radio Sci. 5, 385–392, 2007. Klimenko M.V., Klimenko V.V., and Bryukhanov V.V. J. Atmos. Solar.-Terr. Phys. 70, No.17, 2144–2158, doi: 10.1016/j.jastp.2008.08.001, 2008. Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., Goncharenko, L.P. In Proceedings of the 32nd Annual Seminar “Physics of Auroral Phenomena”, Apatity, 3 – 6 March, 2009. Apatity, 162–165, 2009a. Klimenko, M.V., Klimenko, V.V. In Proceedings of the 32nd Annual Seminar “Physics of Auroral Phenomena”, Apatity, 3 – 6 March, 2009. Apatity, 25–28, 2009b.

12 Klimenko, M.V., Klimenko, V.V. In Proceedings of the 32nd Annual Seminar “Physics of Auroral Phenomena”, Apatity, 3 – 6 March, 2009. Apatity, 158–161, 2009c. Klimenko, M.V., Klimenko, V.V. In Proceedings of the 32nd Annual Seminar “Physics of Auroral Phenomena”, Apatity, 3 – 6 March, 2009. Apatity, 166–169, 2009d. Klimenko, M.V., Klimenko, V.V. In The International Beacon Satellite Symposium BSS2010. P. Doherty, M. Hernandez-Pajares, J.M. Juan, J. Sanz and A. Aragon-Angel (Eds). Campus Nord UPC, Barcelona, 2010a. Klimenko, M.V., Klimenko, V.V., Zakharenkova, I.E. In The International Beacon Satellite Symposium BSS2010. P. Doherty, M. Hernandez-Pajares, J.M. Juan, J. Sanz and A. Aragon-Angel (Eds). Campus Nord UPC, Barcelona, 2010b. Klimenko, M.V., Klimenko, V.V., Zakharenkova, I.E., Pulinets, S.A., Zhao, B., Bryukhanov, V.V. In The International Beacon Satellite Symposium BSS2010. P. Doherty, M. Hernandez-Pajares, J.M. Juan, J. Sanz and A. Aragon-Angel (Eds). Campus Nord UPC, Barcelona, 2010c. Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., Goncharenko, L.P. Geomag. Aeron. 51, No. 3, 2011a (in print). Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., Goncharenko, L.P., Sahai, Y., Fagundes, P.R., de Jesus, R., de Abreu, A.J., and Vesnin, A.M. Radio Sci. 2011b (in print) Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., Goncharenko, L.P.Russian J. Phys. Chem. 30, No.5, 2011c (in print). Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., Goncharenko, L.P. Russian J. Phys. Chem. 30, No.5, 2011c (in print). Klimenko, V.V., Korenkov, Yu.N., Namgaladze, A.A., Karpov, I.V., Surotkin, V.A., Naumova, N.M. Geomagnetism and Aeronomy 31, No. 3, 554–557, 1991. Klimenko, V.V., Korenkov, Yu.N., Namgaladze, A.A. Geomagnetism and Aeronomy 32, No. 5, 74–79, 1992.

13 Klimenko, V.V., Korenkov, Yu.N., Förster, M. Ann. Geophys. 16, No. 10, 1200–1211, doi: 10.1007/s00585-998-1200-9, 1998. Klimenko, V.V., Bessarab, F.S., Korenkov, Yu.N. Cosmic Research. 45, No. 2, 102– 109, 2007. Korenkov, Yu.N., Klimenko, V.V., Namgaladze, A.A., Karpov, I.V., Surotkin, V.A., Glushchenko, T.A., Naumova, N.M. Geomagnetism and Aeronomy 33, No. 1, 63–68, 1993. Korenkov, Yu.N., Klimenko, V.V., Förster, M., Surotkin, V.A., Smilauer, J. Ann. Geophys. 14, No. 12, 1362–1374, 1996a. Korenkov, Yu.N., Klimenko, V.V., Surotkin, V.A., Bessarab, F.S., Smertin, V.M. Adv. Space Res. 18, No. 3, 41–44, 1996b. Korenkov, Yu.N., Klimenko, V.V., Surotkin, V.A., Bessarab, F.S., Natsvalyan, N.S., Förster, M. J. Atmos. and Solar-Ter. Phys. 59, No. 11, 1311–1320, 1997a. Korenkov, Yu.N., Klimenko, V.V., Bessarab, F.S. Geomagnetism and aeronomy, 37, No. 6, 99–107, 1997b. Korenkov, Yu.N., Klimenko, V.V., Förster, M., Bessarab, F.S., Surotkin, V.A. J. Geophys. Res. 103, No. A7, 14697–14710, 1998a. Koren’kov, Yu.N., Klimenko, V.V., Bessarab, F.S. Geomagnetism and aeronomy 38, No. 6, 783–788, 1998b. Koren’kov, Yu.N., Klimenko, V.V., Bessarab, F.S., Förster, M. Geomagnetism and Aeronomy 42, No. 3, 350–359, 2002. Koren’kov, Yu.N., Bessarab, F.S., Klimenko, V.V., Natsvalyan, N.S. Geomagnetism and aeronomy 43, No. 2, 215–222, 2003a. Korenkov, Yu.N., Klimenko, V.V., Baran, V., Shagimuratov, I.I., Bessarab, F.S. Adv. Space Res. 31, No. 4, 983–988, 2003b.

14 Korenkov, Yu.N., Klimenko, V.V., Bessarab, F.S., Natsvalyan, N.S., Stanislawska, I. Advances in Space Research 31, No. 4, 995–1000, 2003c. Korenkov, Yu.N., Klimenko, V.V., Bessarab, F.S. Adv. Space Res. 43, 1633–1637, 2009a. Korenkov, Yu.N., Surotkin, V.A., Klimenko, V.V. MSTU News 12, No. 1, 132–136, 2009b. Korenkov, Yu.N., Surotkin, V.A., Klimenko, V.V., Klimenko, M.V. In The International Beacon Satellite Symposium BSS2010. P. Doherty, M. Hernandez-Pajares, J.M. Juan, J. Sanz and A. Aragon-Angel (Eds). Campus Nord UPC, Barcelona, 2010. Namgaladze, A.A., Martynenko, O.V., Namgaladze, A.N., Volkov, M.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S. J. Atmos. and Terr. Phys. 58, No. 1–4, 297– 306,1996. Namgaladze, A.A., Klimenko, M.V., Klimenko, V.V., Zakharenkova, I.E. Geomagn. Aeron. 49, No. 2, 252–262, 2009. Surotkin, V.A., Klimenko, V.V., Koren'kov, Yu.N. Int. J. Geomagn. Aeron. 7, No. 1, GI1002, doi: 10.1029/2005GI000106, 2007.

15 Bessarab, F.S., Korenkov, Yu.N., Klimenko, V.V., Natsvalyan, N.S. Modeling the reaction thermospheric and ionospheric response to the solar eclipse of August 11, 1999. Geomagnetism and aeronomy 42, No.5, 644–651, 2002. Klimenko, M.V., Klimenko, V.V., Bryukhanov, V.V. Numerical Simulation of the Electric Field and Zonal Current in the Earth’s Ionosphere: The Dynamo Field and Equatorial Electrojet. Geomagn. Aeron. 46, No. 4, 457–466, doi: 10.1134/S0016793206040074, 2006a. Клименко В.В., Клименко М.В., Брюханов В.В. Численное моделирование электрического поля и зональ­ного тока в ионосфере Земли – Постановка задачи и тестовые расчеты Математическое моделирование. 2006. Т.18. №3. С.77-92. Klimenko, M.V., Klimenko, V.V., Bryukhanov, V.V. Numerical Modeling of Equatorial Electrojet During Geomagnetic Substorms Proceedings of the 6th International Conference “Problems of Geocosmos”. St. Petersburg, Russia, Petrodvorets, May 23–27, 2006. St. Petersburg, 83–86, 2006b. Klimenko, M.V., Klimenko, V.V., Bryukhanov, V.V. Numerical Modeling of Auroral Electrojet During Geomagnetic Disturbances With the Account of Particle Precipitation Proceedings of the 29th Annual Seminar “Physics of Auroral Phenomena”, Apatity, February 27 – March 3, 2006. Apatity, 36–39, 2006c. Klimenko, M.V., Klimenko, V.V., Bryukhanov, V.V. Numerical Modeling of Auroral Electrojet during Geomagnetic Disturbances Proceedings of the 29th Annual Seminar “Physics of Auroral Phenomena”, Apatity, February 27 – March 3, 2006. Apatity, 31–35, 2006d. Klimenko, M.V., Klimenko, V.V., Bryukhanov, V.V. Numerical modeling of the equatorial electrojet UT-variation on the basis of the model GSM TIP. Advances in Radio Science 5, 385–392, 2007.

16 Klimenko M.V., Klimenko V.V., and Bryukhanov V.V. Numerical Modeling of the Light Ion Trough and Heat Balance of the Topside Ionosphere in Quiet Geomagnetic Conditions. J. Atmos. Solar.-Terr. Phys. 2008. V.70. No.17. P.2144–2158. doi: 10.1016/j.jastp.2008.08.001 Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., Goncharenko, L.P. Numerical modeling of ionospheric parameters during sequence of geomagnetic storms on September 9–14, 2005. Proceedings of the 32nd Annual Seminar “Physics of Auroral Phenomena”, Apatity, 3 – 6 March, 2009. Apatity, 162–165, 2009a. Klimenko, M.V., Klimenko, V.V. Simulation of main ionospheric trough, light ion trough and polar cap patches during substorms. Proceedings of the 32nd Annual Seminar “Physics of Auroral Phenomena”, Apatity, 3 – 6 March, 2009. Apatity, 25–28, 2009b. Klimenko, M.V., Klimenko, V.V. Numerical modeling of the ionosphere effects on August 1, 2008 solar eclipse. Proceedings of the 32nd Annual Seminar “Physics of Auroral Phenomena”, Apatity, 3 – 6 March, 2009. Apatity, 158–161, 2009c. Klimenko, M.V., Klimenko, V.V. Numerical modeling of the ionospheric precursors of high-latitude earthquakes. Proceedings of the 32nd Annual Seminar “Physics of Auroral Phenomena”, Apatity, 3 – 6 March, 2009. Apatity, 166–169, 2009d. Klimenko, M.V., Klimenko, V.V. The Behavior of F2-Layer Maximum at Low- Latitudes during Geomagnetic Storms on September 9-14, 2005. In The International Beacon Satellite Symposium BSS2010. P. Doherty, M. Hernandez-Pajares, J.M. Juan, J. Sanz and A. Aragon-Angel (Eds). Campus Nord UPC, Barcelona, 2010a. Klimenko, M.V., Klimenko, V.V., Zakharenkova, I.E. Ionospheric effects in TEC during geomagnetic storm sequence on September 9-14, 2005. In The International Beacon Satellite Symposium BSS2010. P. Doherty, M. Hernandez-Pajares, J.M. Juan, J. Sanz and A. Aragon-Angel (Eds). Campus Nord UPC, Barcelona, 2010b.

17 Klimenko, M.V., Klimenko, V.V., Zakharenkova, I.E., Pulinets, S.A., Zhao, B., Bryukhanov, V.V. Formation mechanisms of earthquake ionospheric precursors in TEC. In The International Beacon Satellite Symposium BSS2010. P. Doherty, M. Hernandez-Pajares, J.M. Juan, J. Sanz and A. Aragon-Angel (Eds). Campus Nord UPC, Barcelona, 2010c. Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., Goncharenko, L.P. Ionospheric effects of geomagnetic storm sequence on September 9-14, 2005. Geomag. Aeron. 51, No. 3, 2011a (in print). Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., Goncharenko, L.P., Sahai, Y., Fagundes, P.R., de Jesus, R., de Abreu, A.J., and Vesnin, A.M. Numerical modeling of ionospheric effects in the middle and low-latitude F-region during geomagnetic storm sequence of September 9–14, 2005 Radio Sci. 2011b (in print) Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., Goncharenko, L.P.hysical- chemical formation mechanisms of the ionospheric effects of geomagnetic storms in the middle latitudes in September 2005. Russian J. Phys. Chem. 30, No.5, 2011c (in print). Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., Goncharenko, L.P. Physical- chemical formation mechanisms of the ionospheric effects of geomagnetic storms in the middle latitudes in September 2005. Russian J. Phys. Chem. 30, No.5, 2011c (in print). Klimenko, V.V., Korenkov, Yu.N., Namgaladze, A.A., Karpov, I.V., Surotkin, V.A., Naumova, N.M. Numerical modelling of the "hot spots" in the ionosphere of the Earth. Geomagnetism and Aeronomy 31, No. 3, 554–557, 1991. Klimenko, V.V., Korenkov, Yu.N., Namgaladze, A.A. An influence of plasma motions on the ion and electron temperature distributions in the protonosphere and ionosphere of the Earth. Geomagnetism and Aeronomy 32, No. 5, 74–79, 1992. Klimenko, V.V., Korenkov, Yu.N., Förster, M. Electric field effects on ionospheric and thermospheric parameters above the EISCAT station for summer conditions. Ann. Geophys. 16, No. 10, 1200–1211, doi: 10.1007/s00585-998-1200-9, 1998.

18 Klimenko, V.V., Bessarab, F.S., Korenkov, Yu.N. Numerical Simulation of Effects of the August 11, 1999 Solar Eclipse in the Outer Ionosphere. Cosmic Research. 45, No. 2, 102– 109, 2007. Koren’kov, Yu.N., Namgaladze, A.A. Modeling of Solar Flare Ionospheric Effects. In Ionospheric Disturbances and Methods of their Forecast. Ed. Lyakhova L.N., Yudovoch L.A., Moscow, Science, IZMIRAN, 85–91, 1977 (in Russian). Korenkov, Yu.N., Klimenko, V.V., Namgaladze, A.A., Karpov, I.V., Surotkin, V.A., Glushchenko, T.A., Naumova, N.M. Model calculations of the ionospheric parameters for the conditions on 19 March, 1988. Geomagnetism and Aeronomy 33, No. 1, 63–68, 1993. Korenkov, Yu.N., Klimenko, V.V., Förster, M., Surotkin, V.A., Smilauer, J. Global modelling study (GSM TIP) of the ionospheric effects of excited N2, convection and heat fluxes by comparison with EISCAT and satellite data for 31 Jule 1990. Ann. Geophys. 14, No. 12, 1362–1374, 1996a. Korenkov, Yu.N., Klimenko, V.V., Surotkin, V.A., Bessarab, F.S., Smertin, V.M. Numerical modelling of the thermosphere-ionosphere cou­pling during substorm. Adv. Space Res. 18, No. 3, 41–44, 1996b. Korenkov, Yu.N., Klimenko, V.V., Surotkin, V.A., Bessarab, F.S., Natsvalyan, N.S., Förster, M. Effect of the global neutral hy­drogen distribution on the spatial structure and thermal balance in upper ionosphere. J. Atmos. and Solar-Ter. Phys. 59, No. 11, 1311–1320, 1997a. Korenkov, Yu.N., Klimenko, V.V., Bessarab, F.S. Dynamo electric field influence on low thermosphere winds. Geomagnetism and aeronomy, 37, No. 6, 99–107, 1997b. Korenkov, Yu.N., Klimenko, V.V., Förster, M., Bessarab, F.S., Surotkin, V.A. Calculated and observed ionospheric parameters for a Magion-2 passage and EISCAT data on July 31, 1990. J. Geophys. Res. 103, No. A7, 14697–14710, 1998a.

19 Koren’kov, Yu.N., Klimenko, V.V., Bessarab, F.S. A study of the Interrelationship between Ionospheric Electrodynamics and Thermospheric Circulation for the Self- Consistent Description of the Earth's Upper Atmosphere. Geomagnetism and aeronomy 38, No. 6, 783–788, 1998b. Koren’kov, Yu.N., Klimenko, V.V., Bessarab, F.S., Förster, M. Modeling of the Ionospheric F2-Region Parameters in Quiet Conditions on January 21-22, 1993. Geomagnetism and Aeronomy 42, No. 3, 350–359, 2002. Koren’kov, Yu.N., Bessarab, F.S., Klimenko, V.V., Natsvalyan, N.S. Influence of boundary conditions on the thermodynamic regime of the thermosphere under winter solstice conditions. Geomagnetism and aeronomy 43, No. 2, 215–222, 2003a. Korenkov, Yu.N., Klimenko, V.V., Baran, V., Shagimuratov, I.I., Bessarab, F.S. Model Calculations of TEC Over Europe During 11 August 1999 Solar Eclipse Adv. Space Res. 31, No. 4, 983–988, 2003b. Korenkov, Yu.N., Klimenko, V.V., Bessarab, F.S., Natsvalyan, N.S., Stanislawska, I. Model/Data Comparisons of the F2-region Parameters for the 11 August 1999 Solar Eclipse. Advances in Space Research 31, No. 4, 995–1000, 2003c. Korenkov, Yu.N., Klimenko, V.V., Bessarab, F.S. Global comparison of the model results of GSM TIP with IRI for summer conditions. Adv. Space Res. 43, 1633–1637, 2009a. Korenkov, Yu.N., Surotkin, V.A., Klimenko, V.V. Global first-principal 3D modeling of the TEC and its comparison with GPS measurements. MSTU News 12, No. 1, 132–136, 2009b. Korenkov, Yu.N., Surotkin, V.A., Klimenko, V.V., Klimenko, M.V. Model calculations of errors in determination of the total electron content for GPS satellite system. In The International Beacon Satellite Symposium BSS2010. P. Doherty, M. Hernandez-Pajares, J.M. Juan, J. Sanz and A. Aragon-Angel (Eds). Campus Nord UPC, Barcelona, 2010.

20 Namgaladze, A.A., Mar­tynenko, O.V., Namgaladze, A.N., Volkov, M.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S. Numerical simulation of an iono­spheric disturbance over EISCAT using a global iono­pheric model. J. Atmos. and Terr. Phys. 58, No. 1– 4, 297–306,1996. Namgaladze, A.A., Klimenko, M.V., Klimenko, V.V., Zakharenkova, I.E. Physical mechanism and mathematical modeling of earthquake ionospheric precursors registered in total electron content. Geomagn. Aeron. 49, No. 2, 252–262, 2009. Surotkin, V.A., Klimenko, V.V., Koren'kov, Yu.N. Model calculations of the total electron count for the GPS satellites system. Int. J. Geomagn. Aeron. 7, No. 1, GI1002, doi: 10.1029/2005GI000106, 2007. Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Surotkin, V.A., Glushenko, T.A., Naumova, N.M. Global model of the thermosphere-ionosphere- protonosphere system. Pure and Applied Geophysics (PAGEOPH) 127, No. 2/3, 219–254, 1988. Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Surotkin, V.A., Glushchenko, T.A., Naumova, N.M. A global numerical model of the thermosphere, ionosphere and protonosphere of the Earth. Geomagnetism and Aeronomy 30, No. 4, 612–619, 1990. Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Surotkin, V.A., Naumova, N.M. Numerical modelling of the thermosphere-ionosphere-protonosphere system. J. Atmos. Terr. Phys. 53, 1113–1124, 1991.

21

22 Quiet conditions Δ  = 35.7 (kV) setting at geomagnetic latitudes  75° j 2 = 3  10 -8 A/m 2 (Region 2 Field-Aligned Currents (R2 FAC) j 2 setting at geomagnetic latitudes  70°)

23 Storm Δ  = 26.4 + 13.3  Kp (kV) at geomagnetic latitudes  75° Feshchenko, Maltsev (2003) j 2 = 2.78  10 -8 + 0.32  10 -8  Kp (A/m 2 ) with delay 0.5 h GMLat(j 2 ) =  70° for Kp ≤ 3.0 GMLat(j 2 ) =  65° for 3.0 < Kp ≤ 6.0 GMLat(j 2 ) =  60° for 6.0 < Kp Iijima and Potemra (1976), Kikuchi et al. (2008) Flux Storm /Flux Quiet = 0.55 + 0.64  Kp with delay 0.5 h with turn of a maximum precipitation from midnight to the morning sector

24 Norilsk Effect of additional precipitations Magnetosphere convection without R2 FAC and without (dark blue asterisks) and with additional precipitations (red asterisks). Dark blue circles – quiet conditions. Yakutsk IrkutskHainan Millstone Hill

25 Norilsk Effect of R2 FAC Magnetosphere convection with additional precipitations and without (blue asterisks) and with (red asterisks) R2 FAC. Blue circles – quiet conditions. Yakutsk IrkutskHainan Millstone Hill

26 NorilskYakutsk IrkutskHainan Effect of R2 FAC displacement Magnetosphere convection with additional precipitations and with R2 FAC without (blue asterisks) and with R2 FAC displacement (red asterisks). Blue circles – quiet conditions.

27 Simulation results Magnetosphere convection without additional precipitations and R2 FAC (blue asterisks) and with precipitation and R2 FAC with displacement (red asterisks). Blue circles – quiet conditions.

28 FIRST SUMMARY 1. Comparison of model calculation results of the different ionospheric parameters with experimental data under middle- and low- latitude stations reveals the satisfactory consent. 2. The reasons of distinctions of calculation results and observational data are the folowing: a) the use of 3-hour Kp-indexes at modelling of temporal dependence of input model parameters; b) the dipole approach of geomagnetic field; c) absence in model calculations the effects of solar flares which are taken place during the considered period.

29 The use in model GSM TIP the dipole approach of geomagnetic field does not allow considering its distortion observed during storms: 1.Its compression on the dayside of magnetosphere 2.Its expansion on night side of magnetosphere. By the compression of a geomagnetic field on the day side it is possible to explain the additional contribution to the positive disturbance in electron concentration in the afternoon. At the compression the volume of plasma tube decreases that leads to the enhancement of electron concentration. Unfortunately, now the model GSM TIP does not describe this process.

30 DayUT onsetUT peakUT termination Ionospheric Effects UT onsetUT peakUT termination September 902:4303:0003:0702:5103:0803:15 September 1019:1019:3619:5019:1819:4419:58 September 1021:3022:1122:4321:3822:1922:51 September 1112:4413:1213:5312:5213:2014:01 September 1319:1919:2720:5719:2719:3521:05 September 1410:0510:3810:5410:1310:4611:02 Solar Flares

31 Quiet conditions Kp = 1 AE = 0 F 10.7 = 101 on 09.09.2005 F 10.7 = 118 on 10.09.2005 F 10.7 = 111 on 11.09.2005 F 10.7 = 120 on 12.09.2005 F 10.7 = 115 on 13.09.2005 F 10.7 = 118 on 14.09.2005 Δ  = 38.0 kV setting at geomagnetic latitudes  75° j 2 = 3  10 -9 A/m 2 (Region 2 field aligned currents j 2 setting at geomagnetic latitudes  65°) Storm time conditions 09.09.2005 09:00 UT – 14:01 UT quiet conditions, 14:01 UT – 16:00 UT SSC, 14:01 UT – 16:00 UT SSC, 16:00 UT – 18:00 UT main phase, 16:00 UT – 18:00 UT main phase, 18:00 UT – 06:00 UT 10.09.2005 recovery phase; 18:00 UT – 06:00 UT 10.09.2005 recovery phase; 10.09.2005 06:00 UT – 13:00 UT SSC, 13:00 UT – 20:00 UT main phase, 13:00 UT – 20:00 UT main phase, 20:00 UT – 01:14 UT 11.09.2005 recovery phase; 20:00 UT – 01:14 UT 11.09.2005 recovery phase; 11.09.2005 01:14 UT – 05:00 UT SSC, 05:00 UT – 11:00 UT main phase, 05:00 UT – 11:00 UT main phase, 11:00 UT – 24:00 UT 14.09.2005 recovery phase. 11:00 UT – 24:00 UT 14.09.2005 recovery phase.

32 Region 2 Field aligned currents according to Cheng et al. (2008); Snekvik et al. (2007) in quiet conditions and at recovery phase of storm j 2 = 3  10 -9 + 6  10 -12  AE, A/m 2 at SSC phase of storm with 30 min delay j 2 = 3  10 -9 + 1.5  10 -11  AE, A/m 2 in active phase of storm j 2 = 3  10 -9 + 3.6  10 -11  AE, A/m 2 Storm time conditions Δ  = 38 + 0.089  AE, kV at geomagnetic latitudes  75° Feshchenko, Maltsev (2003) The displacement of Region 2 field aligned currents to the lower latitudes as by Sojka et al. (1994)  65° for Δ  ≤ 40 kV;  60° for 40 kV < Δ  ≤ 50 kV;  55° for 50 kV < Δ  ≤ 88.5 kV;  50° for 88.5 kV < Δ  ≤ 127 kV;  45° for 127 kV < Δ  ≤ 165.4 kV;  40° for 165.4 kV < Δ  ≤ 200 kV;  40° for 165.4 kV < Δ  ≤ 200 kV;  35° for 200 kV < Δ 

33 Particle Precipitation Model of Zhan and Paxton, 2008 Energy (keV) & Energy Flux (erg/cm 2 ) Kp=7.7 Kp=7.0 Kp=6.0 Kp=0.0 Kp=2.0 Kp=4.0 Kp=5.0

34 September 10, 2005 Ionospheric Storm Millstone Hill

35 Goncharenko et al., 2007

36

37

38 September 10, 2005 Ionospheric Storm Arecibo

39 Goncharenko et al., 2007

40

41

42 Ionospheric Effects in TEC of Storm Sequence September 10–14, 2005

43 TEC Disturbances during Storm Sequence on 09-13 September, 2005 Model GPS Model GPS Model GPS Model GPS

44

45

46

47 Simulation results Calculation results: dark blue circles – without solar flares, light red circles – with solar flares, light blue circles – quiet conditions. Experimental data: light black circles – quiet conditions, dark black circles – storm time conditions.

48

49

50 ЗАКЛЮЧЕНИЕ 1. Представлены различные подходы к моделированию ионосферных эффектов геомагнитных бурь и показано, что следует использовать AE индекс с минутным разрешением по времени в качестве независимой переменной вместо 3-часового Kp-индекса при задании временной зависимости разности потенциалов через полярные шапки. 2. Для корректного описания высыпаний авроральных электронов модель ГСМ ТИП была модифицирована введением в нее современной эмпирической модели высыпаний, зависящей от Kp-индекса. 3. Предложены способы задания продольных токов второй зоны, основанные на современных теоретических представлениям и экспериментальных данных, имеющихся в настоящее время в литературе. 4. Учет эффектов солнечных вспышек за счет дополнительной ионизации солнечным излучением позволил в отдельных случаях улучшить согласие результатов расчетов и наблюдений, а также показал, что солнечные вспышки могут влиять на время существования дополнительного F3-слоя в экваториальной ионосфере. 5. Показано, что необходимо учитывать запаздывание вариаций продольных токов второй зоны относительно изменений разности потенциалов через полярные шапки на всех фазах развития геомагнитных бурь.

51 Acknowledgments Authors express the huge gratitude for use of the ionospheric observational data during the period on September 8-14, 2005 obtained from SPIDR. Authors acknowledge the Kyoto Center of geomagnetic data for providing geomagnetic activity indices and World Data Center in Boulder for providing solar activity indices during the period on September 8-14, 2005. We are grateful to the IGS community for providing GPS permanent data. We acknowledge the GUVI team, Irkutsk and Yakutsk digisonde teams and Arecibo and Millstone Hill ISR teams for processing the data and making the experimental data available. We want to say many thanks to Dr. Habaruelema for GPS TEC data above Grahamstown, Dr. L-.A. Maccinel for processing of digisondes data and Dr. Zakharenkova I.E. for plotting of global maps of GPS TEC deviations. This investigations were carried out at financial support of Russian Foundation for Basic Research (RFBR) – Grant № 08-05-00274.

52 Thank you very much for your attention


Download ppt "Шестая ежегодная конференция "Физика плазмы в солнечной системе" 14–18 февраля 2011 г. ИКИ РАН, Москва Различные подходы к моделированию ионосферных эффектов."

Similar presentations


Ads by Google