Presentation is loading. Please wait.

Presentation is loading. Please wait.

4029 u-du: Integrating Composite Functions

Similar presentations


Presentation on theme: "4029 u-du: Integrating Composite Functions"β€” Presentation transcript:

1 4029 u-du: Integrating Composite Functions
AP Calculus

2 Find the derivative 5π‘₯ 5 +4 π‘₯ 3 +3π‘₯+2 5 5 5π‘₯ 5 +4 π‘₯ 3 +3π‘₯ π‘₯ π‘₯ 2 +3 dx/du-part of the antiderivative

3 Integrating Composite Functions
u-du Substitution Integrating Composite Functions (Chain Rule) Revisit the Chain Rule If let u = inside function du = derivative of the inside becomes = π‘₯ 2 +1 2π‘₯𝑑π‘₯

4 A Visual Aid USING u-du Substitution οƒ  a Visual Aid REM: u = inside function du = derivative of the inside let u = becomes now only working with f , the outside function π‘₯ 2 +1 2π‘₯𝑑π‘₯ π‘₯ 2 +1 𝑑𝑒= 2π‘₯𝑑π‘₯ 3 𝑒 𝑐 𝑒 3 +𝑐 π‘₯ 𝑐

5 Example 1 : du given Ex 1: 𝑒= 5π‘₯ 2 +1 𝑒 3 𝑑𝑒 𝑑𝑒=10π‘₯𝑑π‘₯ 𝑒 𝑐 π‘₯ 𝑐 π‘₯ 𝑐 proof π‘₯ π‘₯ 5π‘₯ π‘₯

6 Example 2: du given 𝑒= π‘₯ 3 +1 Ex 2: 𝑑𝑒= 3π‘₯ 2 𝑑π‘₯ π‘₯ 3 +1 1 2 3π‘₯ 2 𝑑π‘₯
𝑑𝑒= 3π‘₯ 2 𝑑π‘₯ π‘₯ π‘₯ 2 𝑑π‘₯ 𝑒 𝑑𝑒 𝑦= π‘₯ 𝑐 𝑒 𝑐 2 3 𝑒 𝑐

7 Example 3: du given 𝑒= π‘₯ 2 +1 Ex 3: 𝑑𝑒=2π‘₯𝑑π‘₯ π‘₯ 2 +1 βˆ’ 1 2 2π‘₯𝑑π‘₯
𝑒= π‘₯ 2 +1 Ex 3: 𝑑𝑒=2π‘₯𝑑π‘₯ π‘₯ βˆ’ π‘₯𝑑π‘₯ 2𝑒 𝑐 𝑒 βˆ’ 𝑑𝑒 2 π‘₯ 𝑐 𝑒 𝑐

8 Example 4: du given Ex 4: 𝑒= tan (π‘₯ ) 𝑒= sec (π‘₯) 𝑑𝑒= 𝑠𝑒𝑐 2 (π‘₯)𝑑π‘₯
𝑒= tan (π‘₯ ) 𝑒= sec (π‘₯) Derivative only 𝑑𝑒= 𝑠𝑒𝑐 2 (π‘₯)𝑑π‘₯ 𝑑𝑒= sec π‘₯ tan⁑(π‘₯) 𝑠𝑒𝑐 2 π‘₯ 𝑑π‘₯ 𝑒 𝑑𝑒 𝑒 𝑑𝑒 𝑒 𝑐 𝑒 𝑐 Function and derivative TWO WAYS! Differ by a constant 1 2 π‘‘π‘Žπ‘› 2 (π‘₯)+𝑐 1 2 𝑠𝑒𝑐 2 π‘₯ +𝑐 tan π‘₯ 𝑠𝑒𝑐 2 π‘₯ 𝑑π‘₯ 1+ π‘‘π‘Žπ‘› 2 π‘₯ = 𝑠𝑒𝑐 2 (π‘₯) Both ways !

9 Example 5: Regular Method
𝑒= sin (π‘₯) 𝑑𝑒= cos π‘₯ 𝑑π‘₯ Ex 5: cos⁑(π‘₯) sin⁑(π‘₯) βˆ’2 𝑑π‘₯ cos (π‘₯) sin (π‘₯) βˆ— 1 sin π‘₯ = cot π‘₯ csc π‘₯ 𝑑π‘₯ sin⁑(π‘₯) βˆ’2 cos π‘₯ 𝑑π‘₯ βˆ’ csc π‘₯ +𝑐 𝑒 βˆ’2 𝑑𝑒 𝑒 βˆ’1 βˆ’1 +𝑐 βˆ’π‘’ βˆ’1 +𝑐 βˆ’ sin π‘₯ βˆ’1 +𝑐 βˆ’ 1 sin π‘₯ +𝑐=βˆ’ csc π‘₯ +𝑐

10 Working with Constants < multiplying by one>
Constant Property of Integration ILL let u = du = and becomes = Or alternately = =

11 Example 6 : Introduce a Constant - my method
βˆ’2 βˆ’2 π‘₯ 9βˆ’ π‘₯ 2 𝑑π‘₯ 𝑒=9βˆ’ π‘₯ 2 𝑑𝑒=βˆ’2π‘₯𝑑π‘₯ βˆ’ 1 2 βˆ’2 βˆ’ βˆ’ π‘₯ βˆ’2π‘₯𝑑π‘₯ βˆ’ 𝑒 𝑑𝑒 βˆ’ 𝑒 𝑐 βˆ’ 1 3 𝑒 𝑐 βˆ’ βˆ’ π‘₯ 𝑐

12 Example 7 : Introduce a Constant
𝑒=3π‘₯ 𝑑𝑒=3𝑑π‘₯ 𝑠𝑒𝑐 2 3π‘₯ 𝑑π‘₯ 𝑠𝑒𝑐 2 3π‘₯ 3𝑑π‘₯ 𝑠𝑒𝑐 2 𝑒 𝑑𝑒 1 3 tan 𝑒 +𝑐 1 3 tan 3π‘₯ +𝑐

13 sec π‘₯ tan π‘₯ 𝑑π‘₯ 𝑒= sec π‘₯ 𝑑𝑒= sec π‘₯ tan π‘₯ sec π‘₯ sec π‘₯ sec π‘₯ tan π‘₯ 𝑑π‘₯ 1 sec π‘₯ sec π‘₯ tan π‘₯ sec π‘₯ 𝑑π‘₯ 1 sec π‘₯ 𝑒 𝑑𝑒 1 sec π‘₯ 𝑒 𝑐 1 sec π‘₯ 𝑠𝑒𝑐 2 π‘₯ 2 +𝑐 1 2 sec π‘₯+𝑐

14

15 Example 8 : Introduce a Constant << triple chain>>
𝑒= sin (2π‘₯) 𝑑𝑒= cos 2π‘₯ 2𝑑π‘₯ 𝑠𝑖𝑛 4 2π‘₯ cos 2π‘₯ βˆ—2𝑑π‘₯ 𝑒 4 𝑑𝑒 𝑒 𝑐 𝑒 𝑐 1 10 𝑠𝑖𝑛 5 2π‘₯ +𝑐

16 Example 9 : Introduce a Constant - extra constant
You is what You is inside 5 3π‘₯+4 5 𝑑π‘₯ << extra constant> π‘₯ 𝑑π‘₯ 𝑒=3π‘₯+4 𝑑𝑒=3𝑑π‘₯ 𝑒 5 𝑑𝑒 𝑒 𝑐 π‘₯ 𝑐

17 𝑒= 3π‘₯ 2 βˆ’2π‘₯+1 Example 10 : Polynomial 𝑑𝑒=(6π‘₯βˆ’2)𝑑π‘₯ (3π‘₯βˆ’1) 3π‘₯ 2 βˆ’2π‘₯ 𝑑π‘₯ 𝑒 βˆ’4 𝑑𝑒 𝑒 βˆ’3 βˆ’3 +𝑐 βˆ’ π‘₯ 2 βˆ’2π‘₯+1 βˆ’3 +𝑐

18 Example 11: Separate the numerator
𝑒= π‘₯ 2 +1 Example 11: Separate the numerator 𝑑𝑒=2π‘₯𝑑π‘₯ 2π‘₯ π‘₯ 2 +1 𝑑π‘₯ π‘₯ 2 +1 𝑑𝑒 𝑒 π‘₯+1 2 𝑒 βˆ’1 𝑑𝑒 π‘₯ 2 +1 = 𝑒 0 0 ln 𝑒 + arctan (π‘₯) +𝑐

19 Formal Change of Variables << the Extra β€œx”>>
ILL: Let Solve for x in terms of u then and becomes = 𝑒 βˆ’6 𝑒 𝑑𝑒 𝑒 π‘‘π‘’βˆ’ 𝑒 𝑑𝑒= 𝑒 βˆ’ 𝑒 = 1 5 𝑒 βˆ’2 𝑒 3 2 π‘₯ βˆ’2 2π‘₯βˆ’ 𝑐

20 Formal Change of Variables << the Extra β€œx”>>
Rewrite in terms of u - du 𝑒=π‘₯+3 𝑑𝑒=𝑑π‘₯ π‘₯=π‘’βˆ’3 2π‘’βˆ’7 𝑒 βˆ’ 1 2 𝑑𝑒 2π‘₯=2π‘’βˆ’6 2π‘₯βˆ’1=2π‘’βˆ’7 2𝑒 βˆ’ 3 2 βˆ’7 𝑒 βˆ’ 𝑑𝑒 2βˆ— 2 5 𝑒 βˆ’7βˆ—2 𝑒 𝑐 4 5 𝑒 βˆ’14 𝑒 𝑐 4 5 π‘₯ βˆ’14 π‘₯ 𝑐

21 Assignment Day 1 Worksheet Larson HW 4029 Day 2 Basic Integration Rules Wksht extra x Larson f anti for tan /cot Text p # (3x)

22 Formal Change of Variables << the Extra β€œx”>>
Solve for x in terms of u - du <<alt. Method>> - could divide or multiply by

23 Complete Change of Variables << Changing du >>
At times it is required to even change the du as the u is changed above. We will solve this later in the course.

24 Integrating Composite Functions
(Chain Rule) Remember: Derivatives Rules Remember: Layman’s Description of Antiderivatives *2nd meaning of β€œdu” du is the derivative of an implicit β€œu”

25 Development must have the derivative of the inside in order to find the antiderivative of the outside *2nd meaning of β€œdx” dx is the derivative of an implicit β€œx” more later if x = f then dx = f /

26 Development from the layman’s idea of antiderivative β€œThe Family of functions that has the given derivative” must have the derivative of the inside in order to find the antiderivative of the outside

27 Working With Constants: Constant Property of Integration
With u-du Substitution REM: u = inside function du = derivative of the inside Missing Constant? u = du = Worksheet - Part 1


Download ppt "4029 u-du: Integrating Composite Functions"

Similar presentations


Ads by Google