Presentation is loading. Please wait.

Presentation is loading. Please wait.

Multiplying Polynomials

Similar presentations


Presentation on theme: "Multiplying Polynomials"— Presentation transcript:

1 Multiplying Polynomials
7-7 Multiplying Polynomials Warm Up Lesson Presentation Lesson Quiz Holt Algebra 1

2 Objective Multiply polynomials.

3 To multiply monomials and polynomials, you will use some of the properties of exponents that you learned earlier in this chapter.

4 Example 1: Multiplying Monomials
A. (6y3)(3y5) (6y3)(3y5) Group factors with like bases together. (6 3)(y3 y5) 18y8 Multiply. B. (3mn2) (9m2n) (3mn2)(9m2n) Group factors with like bases together. (3 9)(m m2)(n2  n) 27m3n3 Multiply.

5 Example 1C: Multiplying Monomials
( ) æ ç è - 2 1 12 4 t s ö ÷ ø Group factors with like bases together. ( ) g æ - ö ç è 2 1 12 4 t s ÷ ø Multiply.

6 When multiplying powers with the same base, keep the base and add the exponents.
x2  x3 = x2+3 = x5 Remember!

7 To multiply a polynomial by a monomial, use the Distributive Property.

8 Example 2A: Multiplying a Polynomial by a Monomial
4(3x2 + 4x – 8) 4(3x2 + 4x – 8) Distribute 4. (4)3x2 +(4)4x – (4)8 Multiply. 12x2 + 16x – 32

9 Example 2B: Multiplying a Polynomial by a Monomial
6pq(2p – q) (6pq)(2p – q) Distribute 6pq. (6pq)2p + (6pq)(–q) Group like bases together. (6  2)(p  p)(q) + (–1)(6)(p)(q  q) 12p2q – 6pq2 Multiply.

10 Another method for multiplying binomials is called the FOIL method.
1. Multiply the First terms. (x + 3)(x + 2) x x = x2 O 2. Multiply the Outer terms. (x + 3)(x + 2) x 2 = 2x I 3. Multiply the Inner terms. (x + 3)(x + 2) x = 3x L 4. Multiply the Last terms. (x + 3)(x + 2) = 6 (x + 3)(x + 2) = x2 + 2x + 3x + 6 = x2 + 5x + 6 F O I L

11 Example 3A: Multiplying Binomials
(s + 4)(s – 2) (s + 4)(s – 2) s(s – 2) + 4(s – 2) Distribute s and 4. s(s) + s(–2) + 4(s) + 4(–2) Distribute s and 4 again. s2 – 2s + 4s – 8 Multiply. s2 + 2s – 8 Combine like terms.

12 Example 3B: Multiplying Binomials
Write as a product of two binomials. (x – 4)2 (x – 4)(x – 4) Use the FOIL method. (x x) + (x (–4)) + (–4  x) + (–4  (–4)) x2 – 4x – 4x + 8 Multiply. x2 – 8x + 8 Combine like terms.

13 Example 3C: Multiplying Binomials
(8m2 – n)(m2 – 3n) Use the FOIL method. 8m2(m2) + 8m2(–3n) – n(m2) – n(–3n) 8m4 – 24m2n – m2n + 3n2 Multiply. 8m4 – 25m2n + 3n2 Combine like terms.

14 In the expression (x + 5)2, the base is (x + 5)
In the expression (x + 5)2, the base is (x + 5). (x + 5)2 = (x + 5)(x + 5) Helpful Hint

15 To multiply polynomials with more than two terms, you can use the Distributive Property several times. Multiply (5x + 3) by (2x2 + 10x – 6): (5x + 3)(2x2 + 10x – 6) = 5x(2x2 + 10x – 6) + 3(2x2 + 10x – 6) = 5x(2x2 + 10x – 6) + 3(2x2 + 10x – 6) = 5x(2x2) + 5x(10x) + 5x(–6) + 3(2x2) + 3(10x) + 3(–6) = 10x3 + 50x2 – 30x + 6x2 + 30x – 18 = 10x3 + 56x2 – 18

16 Example 4A: Multiplying Polynomials
(x – 5)(x2 + 4x – 6) (x – 5 )(x2 + 4x – 6) Distribute x and –5. x(x2 + 4x – 6) – 5(x2 + 4x – 6) Distribute x and −5 again. x(x2) + x(4x) + x(–6) – 5(x2) – 5(4x) – 5(–6) x3 + 4x2 – 5x2 – 6x – 20x + 30 Simplify. x3 – x2 – 26x + 30 Combine like terms.

17 Example 4B: Multiplying Polynomials
[(x + 3)(x + 3)](x + 3) Write as the product of three binomials. [x(x+3) + 3(x+3)](x + 3) Use the FOIL method on the first two factors. (x2 + 3x + 3x + 9)(x + 3) Multiply. (x2 + 6x + 9)(x + 3) Combine like terms.

18 Example 4B: Continued Multiply. (x + 3)3 Use the Commutative Property of Multiplication. (x + 3)(x2 + 6x + 9) x(x2 + 6x + 9) + 3(x2 + 6x + 9) Distribute the x and 3. x(x2) + x(6x) + x(9) + 3(x2) + 3(6x) + 3(9) Distribute the x and 3 again. x3 + 6x2 + 9x + 3x2 + 18x + 27 Combine like terms. x3 + 9x2 + 27x + 27

19 A polynomial with m terms multiplied by a polynomial with n terms has a product that, before simplifying has mn terms. In Example 4A, there are 2 3, or 6 terms before simplifying. Helpful Hint

20 Check It Out! Example 4b Multiply. (3x + 2)(x2 – 2x + 5) Multiply each term in the top polynomial by 2. (3x + 2)(x2 – 2x + 5) Multiply each term in the top polynomial by 3x, and align like terms. x2 – 2x + 5 3x + 2 2x2 – 4x + 10 + 3x3 – 6x2 + 15x 3x3 – 4x2 + 11x + 10 Combine like terms by adding vertically.

21 Write the formula for the area of a rectangle.
Example 5: Application The width of a rectangular prism is 3 feet less than the height, and the length of the prism is 4 feet more than the height. a. Write a polynomial that represents the area of the base of the prism. A = l  w A = l w Write the formula for the area of a rectangle. Substitute h – 3 for w and h + 4 for l. A = (h + 4)(h – 3) A = h2 + 4h – 3h – 12 Multiply. A = h2 + h – 12 Combine like terms. The area is represented by h2 + h – 12.

22 Example 5: Application The width of a rectangular prism is 3 feet less than the height, and the length of the prism is 4 feet more than the height. b. Find the area of the base when the height is 5 ft. A = h2 + h – 12 Write the formula for the area the base of the prism. A = h2 + h – 12 A = – 12 Substitute 5 for h. A = – 12 Simplify. A = 18 Combine terms. The area is 18 square feet.


Download ppt "Multiplying Polynomials"

Similar presentations


Ads by Google