Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 1 1 LOW CARBON BUSINESS REGULATION AND ENTREPRENEURSHIP N.K. Tovey ( ) M.A, PhD, CEng, MICE, CEnv Н.К.Тови М.А., д-р технических наук Recipient of James.

Similar presentations

Presentation on theme: "1 1 1 LOW CARBON BUSINESS REGULATION AND ENTREPRENEURSHIP N.K. Tovey ( ) M.A, PhD, CEng, MICE, CEnv Н.К.Тови М.А., д-р технических наук Recipient of James."— Presentation transcript:

1 1 1 1 LOW CARBON BUSINESS REGULATION AND ENTREPRENEURSHIP N.K. Tovey ( ) M.A, PhD, CEng, MICE, CEnv Н.К.Тови М.А., д-р технических наук Recipient of James Watt Gold Medal 1 NBS-M Control of Energy use in Buildings Building Regulations Lecture 1 Lecture 2

2 Building Regulations Review of Building Regulations in UK –Factors affecting energy consumption and carbon emissions –Standard Assessment Procedure Code for Sustainable Homes Energy Performance Certificates Introduction in Indian Building Regulations Introduction to Chinese Building Regulations 2 Lecture 1 Lecture 2 Lecture 3

3 3 Until 1965 there were no national Building Codes. Previously Local Bye Laws prevailed and modes of construction varied from one part of UK to another. First Building Regulations did not include requirements for Energy Conservation – these came in 1976 Building Regulations are divided into sections and associated Approved Documents (ADs) Part A: Structural Maters Part B: Fire Part F: Ventilation Part H: Heat producing appliances Part L: Energy Conservation and more recently carbon emissions Each Part has associated Ads e.g. for Part L the Approved Documents were originally ADL. Subsequently divided into ADL1 and ADL2 covering dwellings and non- dwelling separately Then subdivided further into ADL1a and ADL1b covering new and existing buildings. Introduction of Building Regulations

4 4 First introduced as Part L in 1976 Basic Statement – largely following what was then common practice e.g. cavity walls brick cavity block with no insulation: - no insulation in floor, minimal insulation in loft. 1994: First attempt to address overall annual energy consumption, although elemental method of compliance was still permitted 2002: Carbon Index introduced 2006: Target Emission Rate and Dwelling Emission Rate introduced. 2010: Came into force Oct 1 st 2010 – relatively minor updates on 2006 Regulations Changes in the Heating Standards of Houses 4

5 Many Deficiencies in earlier Building Regulations Before 1994 if double glazing was used –window area could be doubled –requirements for walls/roof/floor could be relaxed if overall loss < = standard house (type 1 trade off) From 1995 –Could include incidental gains from appliance use/solar gains –If consumption <= standard house - regulations could be relaxed further 1994 & 2000 regulations –If triple glazing used window area can be increased by 50% (type 2 trade off) –If higher insulations for walls used, greater window area permitted provided <= standard house. Traditionally framed for minimum compliance rather than actively promoting energy conservation –Less an issue in 2000 Regs –2005 Regs tightened further reducing opportunities for trade-offs On other hand some of these trade-offs potentially could encourage innovation? 5

6 U-Value Specification with different Regulations U – Values W m -2 o C -1 SAP < 60 SAP > 60 External Wall Roof Floor WindowsNot specified3.02.0* Windows as % of external walls 17%12%- Windows as % of total floor areas --15% 22.5% 25% 22.5% 25%

7 Comparison of energy consumption for a standard detached house at various ages and improvements (Heat losses in W 0 C -1 ) DG – double glazing CAV – cavity wall insulation Numerical value indicates thickness of loft insulation 7

8 Effects of built form on energy consumption (Heat loss W o C -1 ) Houses Bungalows Flats 8

9 Compliance to Building Regulations Compliance to Building Regulations may be achieved by one of several alternative methods. –Elemental Method Specifies maximum U-value and perhaps maximum glazed area – valid until 2002 Regs –Target U-value – weighted average U-value allowed some flexibility in design –SAP Rating (1994 Regs) – economic assessment –Carbon Index (2002 Regs) –Target Emission Rate ( Current Regs ) 9

10 1994 Regulations: A step change Single glazing could no longer be used routinely for domestic buildings Glazed area 22.5% of floor area –50% greater than 1990 regs –50% potential saving lost Standard Assessment Procedure (SAP) rating for new buildings –0-100 – higher the better –No target SAP but requirements relaxed if >60 –SAP – Regs automatically satisfied –Includes energy running costs in calculation –Trade offs permitted Does not specify ventilation rates but gives method for estimating Make allowance for solar water heating if fitted Include hot water requirements 10

11 Building Regulations 2000 Implemented April 2002 Energy rating method –SAP replaced by Carbon Index method for compliance –SAP ratings still to be calculated and notified to building control bodies Requirement of heating & hot water changed to encompass overall system performance, not just controls –Boiler seasonal efficiency, inspection & commissioning included New requirements for efficient lighting systems & provision of information for householders Standards of fabric insulation improved –Lower (better) standards (loft insulation) –Reductions in U values (towards technical limits) –Changed methods for calculating U values Lower U values for windows –Based on sealed double-glazed units with low emissivity panes –Area of glazing increased to 25% floor area Target U-value method retained but provisions for trade-offs improved. 11

12 Compliance procedures 2000 Regulations Three methods to demonstrate compliance with Building Regulations: 1.Elemental approach 2.Target U-Value method 3.Carbon Index 1. Elemental approach – valid if specific conditions are met. –Heating must be gas, oil, heat pump, CHP DH, biogas or biomass –U-values <= Building Regs 2000 standards –Area window, doors, roof lights <=25% floor area –Boiler: SEDBUK efficiency >=78% gas, 80% LPG, 85% oil see [SEDBUK – Seasonal efficiency of domestic boilers in the UK. The average annual efficiency achieved in typical domestic conditions.] 12

13 EU Energy Performance of Buildings Directive (EPBD) 2002/91/EC Aims at improving energy efficiency, carbon emissions from buildings could be reduced by 22%. Objectives of the Directive: To promote the improvement of the energy performance of buildings within the EU through cost effective measures; To promote the convergence of building standards towards those of Member States which already have ambitious levels. Measures include: Methodology for calculating the energy performance of buildings; Application of performance standards on new and existing buildings; Certification schemes for all buildings; Regular inspection and assessment of boilers/heating and cooling installations. 13

14 UK Response Part L Building Regulations (2005) Approved Document ADL1a Came into force in England and Wales on 6 April 2006 (Scotland & Ireland to follow) Office of the Deputy Prime Minister (ODPM) now Department of Local Government and Communities (DCLG) Complies with EU legislation Moves away from energy conservation to carbon emission reduction UK National Calculation Methodology (NCM) for energy performance of buildings based on SAP

15 2. Target U-Value method Calculate Target U-Value –a function of areas of floor, roof, walls, windows etc Modify target –gas & oil boilers: actual SEDBUK efficiency standard SEDBUK efficiency –electric & coal heating: divide by 1.15 –No modification for heat pumps, biomass, biogas, CHP –Purpose of modifications is to give more freedom for designs using efficient oil or gas boilers Modify target if area south facing windows > area north facing windows Calculate weighted average U-value of all external surfaces Weighted average U-value must be <= Target value 15

16 3. Carbon Index Method Most complex method Replaces SAP energy rating as a method of compliance Carbon index appears to be 0-10 Must be >= 8 to comply Max carbon index 10 – but actually 17.7! –Reality: 8 out of 17.7 or 4.5 out of 10! SAP procedure is followed –up to point of introducing costs of fuels –actual annual energy consumption is used to calculate the annual carbon dioxide emission –translated into a carbon index 16

17 Standard Assessment Procedure (2001) Calculate U-values Check U-values are achieved Calculate –gross heat requirements (Heat Loss Rate) –hot water requirements –incidental & solar gains –effective gains –effective internal temperature –corrected degree-day parameter –net space heating total energy requirement Select heating method (pumps, appliance efficiency) Calculate Total Energy Requirement Estimate energy costs of total space heating, hot water & pumps Deflate energy by Energy Cost Factor – 1994:0.96, 2001:

18 Carbon emissions for same house designed to different standards 18

19 19

20 Building Regulation: Compliance Summary Up to and including 2000 Regulations Elemental Method – specifying U-values of fabric elements Target U-Value – allowed some flexibility of design. SAP Rating – an economic measure – only permitted for compliance in 1994 Regs. 2000/2002 Regulations Carbon Index Method- a distorted Carbon Measure 2005/6 Regulations Dwelling Emission Rating must be better than Target Emission Rating. Latter is a derivative of the Target U- Value Method. 2009/10 Regulations Retains DER and TER but expects a 25% improvement on performance over 2005/6 standards 20

21 Carbon Index Calculations (2000 and onwards regulations) Attempts to assess the true environmental performance of a building Follow Standard Assessment Procedure to calculate Total Energy Requirement Calculate CO 2 emissions for building Calculate Carbon Factor (CF) –CF=CO 2 (TFA+45) where TFA is total floor space –Carbon Index (CI) CI= log10(CF) –Complication of scale > regulations indicated that compliance is 11kg CO 2 per m 2 – carbon index of 8 If true scale was used Zicer & Elizabeth Fry would score 13.5 out of

22 Critique of the Standard Assessment Procedure (SAP) Energy efficiency index – but gives a rating that is monetary based not energy based Assumes a general heating level in house – two zones (one living area one other). Does not allow for actual temperature settings. Hot water requirements based on floor area formula not occupancy Incidental gains based on floor area not occupancy Problem: Is this a sensible approach? –If occupancy changes then Rating would change, but it is difficult to compare actual readings with predicted. Alcantar (2008) found problems with methodology for incidental gains etc 2010 Regulations partly address issue with regard to occupancy – e.g. if TFA > 13.9: N = × [1-exp ( × (TFA-13.9)² )] × (TFA-13.9) if TFA 13.9: N = 1 N is the assumed number of occupants, TFA is the total floor area of dwelling. 22

23 2006 Regulations Dwelling Emission Rate is method of compliance - essentially the 2010 Regs are similar with only minor variations in detail Criterion 1 A Dwelling Emission Rating (DER) must be calculated taking due account of the U-values, the size, the types of heating etc using the Standard Assessment Procedure (SAP) The DER must be shown to be less than the Target Emission Rating (TER) which is computed with the same size of building and U-values meeting those as specified in the Regulations. Essentially this is a derivative of the target U – value method Details are shown in Section of handout 23

24 Criterion 2 – limits on design flexibility Performance of the building must not be worse than a given standard. gives considerable latitude in design – the old trade-off problem. However criterion attempts to limit this type of trade-off – see pages 5 and 6 of the Approved Document Criterion 3 – Limiting effects of solar overheating Requires that the effects of overheating in summer must be addressed Regulations Dwelling Emission Rate is method of compliance - essentially the 2010 Regs are similar with only minor variations in detail

25 Criterion 4 Quality of Construction Criterion requires evidence of actual performance – e.g. changes arising from design modifications, quality of workmanship. Some of the requirements involve pressure testing the building to ensure they have achieved those used in the design specification. Criterion 5. Providing Information Requires information on the maintenance and operation of the building to be made available Regulations Dwelling Emission Rate is method of compliance - essentially the 2010 Regs are similar with only minor variations in detail

26 Critique of the Standard Assessment Procedure (SAP) Standing charge ignored for electricity, included for gas. Oil doesnt have a fixed charge Can lead to some perverse consequences –Lower efficiency oil heating can give a higher SAP rating than more efficient gas Energy Cost Deflator is needed –Unnecessary complication that allows for inflation –But does not allow for differential prices changes between fuels SAP 1995 – possible SAP rating of over 110 –SAP of 100 readily achievable SAP 2001 – widened scale (over 120) for consistency with existing scale SAP 2005 changed scale to have 100 for zero energy house – means all previous calculation have to be redone. –Now possible to get > 100 if a house is carbon negative – i.e. will be exporting more energy than it consumes. 26

27 CALCULATION of SAP RATING While the Standard Assessment Procedure makes sense the final Rating known as the SAP Rating creates problems The SAP rating is related to the total energy cost by the equations: Energy Cost Factor (ECF) = deflator × total energy cost / (TFA + 45) (10) The total energy running cost includes not only heating but also requirements for hot water, lighting etc as well as pumps/fans associated with heating. These are proscribed costs according to a table which are not actual costs. The deflator is a factor which varies according to energy costs and is intended to keep SAP Ratings constant with time irrespective of changes in fuel prices - this has not been the case in the past.

28 CALCULATION of SAP RATING 2010 First work out the Energy Cost Factor (ECF) where ECF = deflator × total energy cost / (TFA + 45) and TFA is the total floor area of the dwelling. [the energy cost factor initially has been set at 0.47] if ECF >= 3.5, SAP 2009 = 117 – 121 x log 10 (ECF) if ECF < 3.5, SAP 2009 = 100 – x ECF Note (q) on page 151 of the SAP document indicates deflator will change to keep SAP Rating constant overall but that for individual fuels the Rating will vary.

29 SAP Rating SAP Mains gas LPGOilElectricitySolid mineral Biomass Impact of Changing Methodology on SAP Rating These changes are relatively small compared with changes in previous methodology changes – i.e – 2001 and 2001 – However these demonstrate the problem of using Economic Cost as a Key Factor in determining the SAP Rating

30 Climatic Issue with 2010 Calculations 30 Calculations have to take account of Climate Variations of Solar Gain for Assessment of Cooling Requirements But NOT Heating (even though heating requirements will vary by up to +/- 25% from one part of country to another Benefit of Solar Panels does not account for geographic variations in solar radiation even though this information is available for coolign calculations.

31 Effective changes in SAP 1995 rating with specific changes SAP changes by: Change U-values by 10% 2 – 3 Change window area by 10% 1 – 2 Change floor area by 10% 4 – 5 Change heating from mains gas to LPG (little change in energy consumption) - 15 Change heating from condensing gas to inferior oil !!!!! Sources: Monahan, J (2002) MSc Dissertation UEA; Turner, C. (2003) BSc Dissertation UEA Turner, C. (2003) BSc Dissertation UEA 31

32 Calculating the TER TER 2010 = (C h x FF x EFA h + C l xEFA l ) x (1–0.2)* (1 – 0.25) 25% improvement on 2005 Where C h is the energy requirements for space heating and hot water including any used in circulating pumps, C l is the energy use for lighting FF is a fuel factor EFA is the relevant Emission Factor Adjustment and is a ratio of the emission factors used in the 2009 calculations divided by the equivalent ones in the 2005 calculations. Improvements for Environmental Impact Rating (EI)

33 Carbon Factor (CF) = (CO 2 emissions) / (TFA + 45) where TFA is the Total Floor Area if CF >= 28.3 EI rating = 200 – 95 x log 10 (CF) if CF < 28.3 EI rating = 100 – 1.34 x CF where the CO 2 emissions are calculated according to the Standard Assessment Procedure The EI rating is essentially independent of floor area It will vary slightly depending on actual plan shape A house with zero emissions will have the EI at 100 An EI > 100 if a house is a net exporter of energy. Primary energy requirements are also calculated in a similar way to CO 2 emissions.

34 Letter Rating bands are assigned as follows It applies to both the SAP rating and the Environmental Impact rating (why the SAP Rating??). Rating Band Improvements for Environmental Impact Rating (EI) EI RangeLetter Rating > 92A 81 to 91B 69 to 80C 55 to 68D 39 to 54E 21 to 38F 1 to 20G

35 35 How has the performance of a typical house changed over the years? Bungalow in South West Norwich built in mid 1950s Original Construction Brick – brick cavity walls Metal windows Solid floor no insulation No loft insulation

36 36 House constructed in mid 1950s Part L first introduced ~>50% reduction First attempt to address overall consumption. SAP introduced. Changing Energy Requirements of House In all years dimensions of house remain same – just insulation standards change As houses have long replacement times, legacy of former regulations will affect ability to reduce carbon emissions in future 36

37 37 House constructed in mid 1950s Changing Energy Requirements of House Existing house – current standard: gas boiler Improvements to existing properties are limited because of in built structural issues – e.g. No floor insulation in example shown. House designed to conform the Target Emission Rate (TER) as specified in Building Regulations 2006 and SAP As Existing but with oil boiler

38 38 Example: Heat house with condensing gas boiler ~ 90% efficient For each unit (kWh) of heat provided. –1/0.9 = 1.11 units of gas must be supplied –Carbon associated with this ~ 0.21 kg –Direct electric heating ~ 0.52 kg Heat Pump with Coefficient of Performance of 4 –Carbon emission associated = 0.52/4 = 0.13 –A 38% saving over gas. –Note some people claim higher savings based on incorrect DEFRA carbon factor of 0.43 –Improved performance of heat pumps is possible with under floor heating Issue of Fuel Choice for carbon reduction

39 39 House constructed in mid 1950s Changing Carbon Dioxide Emissions Existing house – current standard: gas boiler As Existing but with oil boiler Notice significant difference between using gas and oil boiler. House designed to conform the Target Emission Rate (TER) as specified in Building Regulations 2006 and SAP

40 40 Code for Sustainable Homes Responding to the Challenge N.K. Tovey ( ) M.A, PhD, CEng, MICE, CEnv Н.К.Тови М.А., д-р технических наук Energy Science Director CRed Project HSBC Director of Low Carbon Innovation Recipient of James Watt Gold Medal 40

41 41 Introduced over next few years to improve standards to ultimate zero carbon house But objectives of a low carbon future may be jeopardised if attention is not also paid to sustainable transport associated with new dwellings The Future: Code for Sustainable Homes Data for 1 household with 2 cars

42 42 The Code For Sustainable Homes The Code for Sustainable Homes is a set of sustainable design principles covering performance in nine key areas. 1.Energy and CO 2 2.Water 3.Materials 4.Surface water run-off 5.Waste 6.Pollution 7.Heath and well being 8.Management 9.Ecology 9 key areas of performance….

43 43 Code for Sustainable Homes: Certificates Code Assessed. This house gets 5* Non Assessed Code is voluntary at present, but a NIL Certificate is needed if assessment is not done

44 44 Code for Sustainable Homes: Certificates

45 Relative Weighting of different Code categories 45 Total Credits available, Weighting Factors and Points Categor ies of Environmental Impact Total credits in each category Weighting factor (% points contribution) Approximate weighted value of each credit Category 1: Energy and CO 2 Emissions %1.26 Category 2: Water 69.0%1.50 Category 3: Materials 247.2%0.30 Category 4: Surface Water Run-off 42.2%0.55 Category 5: Waste 76.4%0.91 Category 6: Pollution 42.8%0.70 Category 7: Health and Wellbeing %1.17 Category 8: Management 910.0%1.11 Category 9: Ecology 912.0%1.33 Total –100.0%–

46 46 Minimum Standards for Energy and Water EnergyWater Code LevelStandard (% better than ADL1a) Points Awarded Standard (litres / person / day) Points Awarded Other Points Required Level 1 * Level 2 ** Level 3 *** Level 4 **** Level 5 ***** Level 6 ****** Zero Carbon

47 Dwelling Emission Rate DER (Maximum 15 credits) % Improvement of DER over TER CreditsMandatory Levels 10%1Level 1 14%2 18%3Level 2 22%4 25%5Level 3 31%6 37%7 44%8Level 4 52%9 60%10 69%11 79%12 89%13 100%14Level 5 True Zero Carbon15Level 6 Credits gained for different improvements 47

48 48 Date Energy/carbon improvement as compared to ADL1a (Building Regulations 2006) 25%44% Zero Carbon Water Efficiency Standard 105l/p/day 80l/p/day Equivalent energy/carbon standard in the Code Code Level 3Code Level 4Code Level 6 Roadmap to 2016 Major progressive tightening of the minimum energy performance standards in building regulations - by 25 % in 2010, 44 % in 2013 – up to the zero carbon target in 2016.

49 49 Where the net carbon emissions from all energy used in the dwelling are zero or better. Where the heat Loss Parameter is 0.08 W/m 2 K – an indicator of exemplar building fabric Off site energy must be private wire –connected to the site Using a Green Tariff cannot be used to reduce carbon Nor can purchase of offsets What Does Zero Carbon Mean?

50 House constructed in mid 1950s Implications of Code on Carbon Dioxide Emissions Code 5: Zero Carbon House for Heating/Hot Water and Lighting Code 6: Zero Carbon House overall but in reality is this achievable? -10% -18% -25% -44% 50

51 51 Improvements on the SAP 2005 standards as required by the different code levels can be met by: Improved Fabric performance Lower U-values Technical Solutions Solar Thermal Solar Photo-voltaic Heat Pumps Biomass Micro- CHP Low Energy Lighting (SAP 2005 already specifies 30%) Responding to the Challenge: Energy Service Companies may offer a solution for financing Issues of Carbon Trading

52 52 What can be achieved through Improved Fabric / standard appliance Performance Using SAP 2005 standard reference Explore different combinations of following improvements. ItemSAP reference Improved Value 1 Improved Value 2 WindowsU-value = 2U-value = 1.4 WallsU-value = 0.35U-value = 0.25U-value = 0.1 FloorU-value = 0.25 RoofU-value = 0.16 Boiler efficiency 78%83% default90% SEDBUK Responding to the Challenge: Technical Solutions

53 SEDBUK DataBase (Seasonal Efficiency of Domestic Boilers in UK) 53 WEB PAGE:

54 54 The Future: Code for Sustainable Homes OptionCO 2 Emissions (kg)ReductionCredits ASAP Reference BBoiler η = 83% (default) 23775%0 CBoiler η = 90% (SEDBUK) %1 Dη = 90%: Walls: U = %2 Eη = 90%: Walls: U = %3 Fη = 90%: Windows: U = %2 GC + D + F %3 HC + E + F %4 Improvements in Insulation and boiler performance Code 1 Code 2 Option H nearly makes code 3 SAP 2005 standard Walls: 0.35 Wm -2o C -1 Windows: 2.0 Wm -2o C -1 Boiler η 78%

55 55 Responding to the Challenge: Technical Solutions What can be achieved through Use of Domestic Solar Energy Different solar thermal collector areas Different combinations of storage tank Use of PV Use of combinations of solar thermal with PV

56 56 Responding to the Challenge: Technical Solutions Solar Thermal Energy Basic System relying solely on solar energy

57 57 Responding to the Challenge: Technical Solutions Solar Thermal Energy indirect solar cylinder Solar tank with combi boiler

58 58 Normal hot water circuit Solar Circuit Solar Pump Responding to the Challenge: Technical Solutions Solar Thermal Energy Dual circuit solar cylinder

59 59 Annual Solar Gain 910 kWh Solar Collectors installed 27th January 2004 Responding to the Challenge: Technical Solutions Solar Thermal Energy

60 60 Responding to the Challenge: Technical Solutions Solar Thermal Energy

61 61 CO 2 (kg)ReductionCredits ASAP Reference BBoiler η = 90% (SEDBUK) %1 Cη = 90%: Solar Thermal – 2 panels dual cylinder %3 Dη = 90%: Solar Thermal – 2 panels separate cylinder %3 Eη = 90%: Solar Thermal – 3 panels separate cylinder %3 Fη = 90%: Solar Thermal – 4 panels separate cylinder %3 Gη = 90%: Solar Thermal – 5 panels separate cylinder %4 The Future: Code for Sustainable Homes Improvements using solar thermal energy. How far can things be improved? Code 1 Code 2 Note: little extra benefit after 3 panels, but does depend on size of house

62 62 S Responding to the Challenge: Technical Solutions Solar PhotoVoltaic

63 63 CO 2 (kg)ReductionCredits ASAP Reference BBoiler η = 90% (SEDBUK) %1 Cη = 90%: Solar PV 5 sqm %3 Dη = 90%: Solar PV 10 sqm %5 Eη = 90%: Solar PV 5 sqm + 2 panel solar thermal %5 Fη = 90%: Solar PV 7.4 sqm + 2 panel solar thermal %5 The Future: Code for Sustainable Homes Improvements using solar Photovoltaic Code 1 Code 2 Code 3 Note: 2 panels of solar thermal have same benefit as 5 sqm of PV

64 What can be achieved through Use of Heat Pumps Biomass Boilers Will Code 5 be achievable? 64 Responding to the Challenge: Technical Solutions

65 65 Responding to the Challenge: Technical Solutions The Heat Pump Any low grade source of heat may be used Coils buried in garden 1 – 1.5 m deep Bore holes Lakes/Rivers are ideal Air can be used but is not as good Best performance is achieved if the temperature source between outside source and inside sink is as small as possible. Under floor heating should always be considered when installing heat pumps in for new build houses – operating temperature is much lower than radiators. Attention must be paid to provision of hot water - performance degrades when heating hot water to 55 – 60 o C Consider boost using off peak electricity, or occasional Hot Days

66 66 CO 2 (kg)ReductionCredits ASAP Reference BBoiler η = 90% (SEDBUK) %1 CGround to Water Heat Pump (Radiators) %6 DAir to Water Heat Pump (Radiators) %4 EGround to Air Heat Pump %6 FAir to Air Heat Pump %4 GGround to Water Heat Pump (Under floor) %7 HAir to Water Heat Pump (Under floor) %5 The Future: Code for Sustainable Homes Improvements using Heat Pumps Code 1 Code 2 Code 3 Code 4 Code 3

67 67 CO 2 (kg)ReductionCredits ASAP Reference 25040%0 BBoiler η = 90% (SEDBUK) %1 CWater to Air Heat Pump (under floor) %7 DAs C with improved insulation %8 EAs D with 100% Low Energy Lighting %8 FAs E with Solar Thermal %9 GAs E with 5 m 2 Solar PV %9 HAs E with 10 m 2 Solar PV 86465%10 The Future: Code for Sustainable Homes Various Combinations Code 1 Code 2 Code 3 Code 4

68 68 CO 2 (kg)ReductionCredits ASAP Reference 25040%0 BBoiler η = 90% (SEDBUK) %1 CBiomass Boiler 67373%11 DBiomass Boiler with Solar Thermal 67073%11 EBiomass Boiler with 5m Photovoltaic 49680%12 FBiomass Boiler with 10m Photovoltaic 31887%12 G Biomass Boiler + 10m PV + improved insulation + 100% Low Energy lighting 14794%13 The Future: Code for Sustainable Buildings Improvements using Biomass options Note: Biomass with solar thermal are incompatible options Code 1 Code 2 Code 3 Code 4

69 69 Micro CHP Ways to Respond to the Challenge: Technical Solutions Micro CHP plant for homes are being trialled. Replace the normal boiler But there is a problem in summer as there is limited demand for heat – electrical generation will be limited. Backup generation is still needed unless integrated with solar photovoltaic? In community schemes explore opportunity for multiple unit provision of hot water in summer, but only single unit in winter.

70 70 How can low carbon homes be provided at an affordable cost? Energy Service Companies (ESCos) Home costs same initial cost as traditional home Any additional costs for providing renewable energy, better insulation/controls are financed by ESCo Client pays ESCo for energy used at rate they would have done had the house been built to basic 2005 standards ESCo pays utility company at actual energy cost (because energy consumption is less) Difference in payments services ESCo investment When extra capital cost is paid off Client sees reduced energy bills ESCO has made its money Developer has not had to charge any more for property The Environment wins Responding to the Challenge:

71 71 Significant Improvements can be achieved through Better Insulation Standards Heat Pumps Biomass Boilers - but is fuel source sustainable? Solar Thermal Solar PV The Future: Code for Sustainable Buildings: Conclusions But avoid incompatible options Too large a Solar thermal Array Biomass with solar thermal CHP with Solar Thermal Will it be realistically possible to achieve code level 5?

72 72 The Behavioural Dimension: Are Technical Measures Enough? Analysis of 114 houses in Norwich using Gas Heating Predicted consumption from SAP was within 1.9% of actual energy consumption for Space Heating/ Hot Water and Gas Cooking. Plot shows variation from predicted for each house Little variation with household size Consumption varies by up to a factor of 9 for any given household size. Education/Awareness is important. provide INFORMATION PACKS Are Technical Measures alone going to be sufficient to reduce carbon emissions?

73 73 The Behavioural Dimension Household size has little impact on electricity consumption. Consumption varies by up to a factor of 9 for any given household size. Allowing for Income still shows a range of 6 or more. Education/Awareness is important.

74 74 CO 2 / year tonnes tonnes tonnes tonnes > 10 tonnes Variations in Carbon Emissions in existing houses Analysis: courtesy of Karla Alcantar

75 75 The Future: Code for Sustainable Buildings All non-dwellings must display a certificate such as shown >10000m 2 from 6 th April 2008 > 2500m 2 from 1 st July 2008 All non-residential buildings > 1000m 2 from 1 st October Separate assessments for air- conditioning plant will be phased in from 1 st January 2009 Elizabeth Fry Building: Penalised because it does not have thermostatically controlled radiator values. Does not get credit for triple/ quadruple glazing – analysis system cannot cope!!!!! There are no radiators!!!!!!

76 Indian Building Code WEBSITE: Also available at UEA at – M14x/Indian_DRAFTECBC27MARCH2006.pdf 76 Code was formulated following Energy Conservation Act of 2001 According to Saurabh Kumar, Secretary of Ministry of Power (18 th April 2007), Code was to be trialled in demonstration areas from July 2007 An initial appraisal suggests that code tends to follow the equivalent of an Elemental Approach, but with differences

77 Unlike UK, elemental standards vary from region to region according to climate. UK has 18 zones each with different Degree-Days, but elemental standards are same [Technically Scotland could modify standards in Scotland] Two identical houses in UK, one in South West, the other in North East Scotland, the energy consumption for space heating in latter would be 47% higher than former 77 Is it sensible to have different standards in different climate regimes? Indian Building Code

78 Climate ZoneHospitals, Hotels, Call Centers (24-Hour) Other Building Types (Daytime) Maximum U-factor (W/m 2 o C -1 ) Maximum U-factor (W/m 2 o C -1 ) Composite0.352 Hot and Dry Warm and Humid0.352 Moderate Cold Indian Building Code Example of U-values for walls Based on Table of ECBC Note: The U-value in the UK is 0.35 W/m 2 o C -1

79 79 Chinese Building Code China is adopting a similar approach to that suggested for India

80 Country/DistrictU-Values (W m -2 o C -1 ) WallsWindowsRoof Beijing (2003)0.82 – – 0.8 Beijing (current)0.6 Shanghai (current)1.0 Germany Sweden UK (2005 Regulations) Canada – 0.4 Hokaido, Japan Zones in USA similar to Beijing0.32 – Zones in Russia similar to Beijing 0.44 – – Chinese Building Code

81 81

82 82 A Pathway to a Low Carbon Future 1. Awareness: Information Packs 3. Renewable Energy 4. Offsetting 2. Technical Solutions to conserve energy Low energy lighting/better insulation etc

Download ppt "1 1 1 LOW CARBON BUSINESS REGULATION AND ENTREPRENEURSHIP N.K. Tovey ( ) M.A, PhD, CEng, MICE, CEnv Н.К.Тови М.А., д-р технических наук Recipient of James."

Similar presentations

Ads by Google