Download presentation

1
**C2 Trigonometric Identities**

cos²ø + sin²ø = 1 So cos²ø = 1 - sin²ø And sin²ø = 1 - cos²ø sin ø = tan ø cos ø 1. Use this information to solve 2 cos²ø – sinø – 1 = 0 for 0 ≤ ø ≤ 360 2. Solve tanø =4cosø for -180 ≤ ø ≤ 180

2
2 cos²ø – sinø – 1 = 0 for 0 ≤ ø ≤ 360 Cos²ø = 1 - sin²ø 2(1 - sin²ø) – sinø – 1=0 2 - 2sin²ø – sinø – 1=0 2sin²ø + sinø – 1=0 Factorise (2sinø - 1)(sinø + 1)=0 sinø = ½ or sinø = -1 ø = 30º, 150º or 270º

3
**Solve tanø =4cosø for -180 ≤ ø ≤ 180**

sin ø = 4cosø cos ø sinø = 4cos²ø sinø = 4(1-sin²ø) sinø = 4 - 4sin²ø 4sin²ø – sinø – 4 = 0 (use formula to solve) sinø = or sinø = (no solutions) ø = 62.0º, 118º

Similar presentations

OK

Solving Trigonometric Equations. First Degree Trigonometric Equations: These are equations where there is one kind of trig function in the equation and.

Solving Trigonometric Equations. First Degree Trigonometric Equations: These are equations where there is one kind of trig function in the equation and.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google