Presentation is loading. Please wait.

Presentation is loading. Please wait.

© Geodise Project, University of Southampton, 2001-2004. Semantic Web based Content Enrichment and Knowledge Reuse in e-Science.

Similar presentations


Presentation on theme: "© Geodise Project, University of Southampton, 2001-2004. Semantic Web based Content Enrichment and Knowledge Reuse in e-Science."— Presentation transcript:

1 © Geodise Project, University of Southampton, Semantic Web based Content Enrichment and Knowledge Reuse in e-Science Feng Tao, Liming Chen, Nigel Shadbolt, Fenglian Xu, Simon Cox, Colin Puleston, Carole Goble University of Southampton University of Manchester U.K. Presenter: Barry TAO

2 © Geodise Project, University of Southampton, Overview Background and purpose –EDSO, Resource, knowledge support A layered semantic infrastructure –Protégé + OWL, Ontology, Jena, Annotator and Advisor Life cycle of semantic web base KM –Knowledge capture, binding and reuse Illustration of various tools –Generic Protégé tool, Function Annotator, Knowledge advising service, knowledge toolbox in Matlab, etc. Summary

3 © Geodise Project, University of Southampton, Background and purposes e-Science –Large scale science –Distributed global collaboration on data, computation and knowledge Grid based EDSO –Engineering Design Search & Optimisation –Resources of distributed computation, distributed storage and distributed knowledge –Toolbox of Grid enabled Matlab functions Describe and share resources using Ontology and Semantic Grid technologies –Components: Matlab functions – the toolbox, –Domain knowledge: optimisation methods, valid configurations, etc. Provide knowledge through reusing the semantics –Retrieval of the semantics (direct use) –Advice (more advanced usage) On function configuration On workflow composition (driven by semantic matching) –Web services, distributed and service oriented architecture

4 © Geodise Project, University of Southampton, Layered Semantic Web Infrastructure EDSO Domain Ontology –Concepts and relations in a domain –Obtained through KA –Represented in OWL Generic Ontology/Semantics manipulation –Protégé with Owl plug-in –Ontology further refined and populated in protégé Geodise knowledge services/demonstrators –Function Annotator –Semantic Retrieval GUI –Knowledge advisor service Geodise Apps integrated with knowledge –Knowledge toolbox in Matlab –WCE standalone tool –DSE standalone tool

5 © Geodise Project, University of Southampton, Knowledge Life cycle Knowledge Capturing –Knowledge Acquisition, building Ontologies Knowledge Binding –Annotation : Creating instances of ontological concepts –Protégé editor, function annotator Knowledge Modeling –Specification of useful knowledge: Semantic retrieval, advice on function configuration and assembly Knowledge Reusing –Semantic based function query and knowledge advisor Illustration follows

6 © Geodise Project, University of Southampton, Knowledge Capturing Knowledge Acquisition –From Domain experts and domain documents. –Build in Protégé with OWL Plug-in –Concepts Classes –Relationships Hierarchy Property slots Result –OWL format ontology

7 © Geodise Project, University of Southampton, Function Annotation (Knowledge Binding) Generating semantic instances –Binding ontology with semantics content –Populating the semantic web based knowledge base Supporting Tools –Through Protégé editor High flexibility (can generate instances of any ontology concept) sometimes tedious –Through a customized function annotator Automatic parsing Lack of flexibility (only deal with functions at the moment) –We use both

8 © Geodise Project, University of Southampton, With Protégé Creating + maintaining the ontology Generating semantic instances –Instantiating abstract nodes defined in ontology –Filling ontology driven forms with semantic content

9 © Geodise Project, University of Southampton, With Function Annotator Customised for Matlab functions –Automatic parsing Matlab function source Instantiating abstract nodes defined in ontology Semi-automatic filling of the ontology driven forms

10 © Geodise Project, University of Southampton, Knowledge Reuse Semantic retrieval –Retrieve semantics from the knowledge repository (Entity Semantics) Inference –Direct – a subClassOf b, b subClassOf c –Inferred – a subClassOf c Advice –Function assembly (Service composition) –Function configuration (Parameter tuning) Service Oriented Architecture –Service side: Semantics processing and domain specific knowledge generation mechanisms with web service interfaces –Client side: light weight, generic web service invoking, returns XML

11 © Geodise Project, University of Southampton, Function/workflow Repository (Archive) Service-oriented Semantics Application Scenario Geodise Functions Function Ontology Function Annotator Grid Fabrics Semantic/Knowledge support middleware Ontology Services Advisor Services Instance Services …. Engineering Design Community The Proposed Browser-based Function/workflow Explorer Geodise Matlab EnvWCE Other applications If we want to leverage and harvest the maximum benefit of Semantic web, i.e. effective discovery, machine-enabled (processible, understandable) interoperability and automation, and the Grid, i.e. resource sharing, this is one of the realisations. The choice is up to the users!

12 © Geodise Project, University of Southampton, Towards Service Oriented Paradigm Server (in the middle) –Semantic layer –Interfaces at different level Web service Java APIs

13 © Geodise Project, University of Southampton, Towards Service Orientated Paradigm Other java applications (to the left) –Consume the service via Knowledge service APIs –WCE, DSE, FA, DL-FQ –To be moved to client side in the right?

14 © Geodise Project, University of Southampton, Towards Service Orientated Paradigm Client (to the right) –Matlab PSE –Knowledge Toolbox Matlab Java Web service consumer Illustrations follows …

15 © Geodise Project, University of Southampton, Semantics Retrieval Examples Get all optimisation methods (below) Get semantics of a particular optimisation method (right ) Integration Support dynamic GUI generation

16 © Geodise Project, University of Southampton, Function Query GUI

17 © Geodise Project, University of Southampton, Advice on Function Assembly (Integrated in Matlab – Knowledge Toolbox) Goal –Function assembly –What can be deploy next and before? Mechanism –Matlab Java WSDL Web service –Function semantic interface –Semantic matching Pre-requirements –Function has been annotated –Semantics available in the instance store

18 © Geodise Project, University of Southampton, Advice on Function Configuration You are using #genetic algorithm search#. Additional control parameters have been added. You may need still to configure the following control parameters:. GA_NPOP GA_ALPHA GA_DMAX GA_DMIN GA_NBIN GA_NBREED GA_NCLUST GA_NRANDM GA_PBEST GA_PCROSS GA_PENAL GA_PINVRT GA_PMUTNT GA_PRPTNL GA_PSEED % get the default beam structure beam = createBeamStruct (4) % analyze the OMETH and advice on its additional control parameter (with default value) beamcontrol = gdk_options(beam) % check semantics gdk_semantics(GD_NPOP) % further configure these control parameters … % run options s = OptionsMatlab (beamcontrol) 1 2 3

19 © Geodise Project, University of Southampton, Advice on Function Assembly (Integrated in WCE – workflow advisor) Select a function and request advice Function assembly advice

20 © Geodise Project, University of Southampton, Advice on Function Assembly (Integrated in Domain Script Editor) Function configuration advice Function assembly advice Ontology and semantics Domain script editing area

21 © Geodise Project, University of Southampton, Related Work Protégé with OWL plug-in –Open source ontology editor, widely used –OWL plug-in built on Jena Jena, HP –Originally designed as RDF oriented –OWL support added on at the top layer –Various types of ontology modes: OWL_MEM, OWL_DL_MEM, etc. –Inference is available through graph manipulating OilED+Ontoview, UoM –OilEd developed for building DAML+OIL ontology –Ontoview is a simplified view/editing tool and API –Adapted for DL based reasoning over Instance Store

22 © Geodise Project, University of Southampton, Summary & Conclusions Purpose and background of KM in EDSO A layered semantic infrastructure –Protégé + OWL, Ontology, Jena, Annotator and Advisor Life cycle of semantic web base KM –Knowledge capture, binding and reuse Demonstrations of various tools Long process Preparation of ontologies and semantics instances are important Integration is not easy Reusing in a smart way is the key (reuse in engineers favorite PSE)

23 © Geodise Project, University of Southampton, Future Work Allow engineers to curate knowledge themselves in their favorite PSE (more integration) WSE, Matlab Synchronization Engineers need to Maintain local knowledge of their own Selectively synchronize local knowledge with centralized knowledge Target more resources –Workflow –Grid fabrics More interfaces to the knowledge repository –More advanced advice on OptionsMatlab in Matlab –Function Browser


Download ppt "© Geodise Project, University of Southampton, 2001-2004. Semantic Web based Content Enrichment and Knowledge Reuse in e-Science."

Similar presentations


Ads by Google