Presentation is loading. Please wait.

Presentation is loading. Please wait.

The PANDA Experiment at FAIR Marco Destefanis Università degli Studi di Torino Hadron Structure 2013 Tatranské Matliare (Slovakia) June 30- July 04, 2013.

Similar presentations


Presentation on theme: "The PANDA Experiment at FAIR Marco Destefanis Università degli Studi di Torino Hadron Structure 2013 Tatranské Matliare (Slovakia) June 30- July 04, 2013."— Presentation transcript:

1 The PANDA Experiment at FAIR Marco Destefanis Università degli Studi di Torino Hadron Structure 2013 Tatranské Matliare (Slovakia) June 30- July 04, 2013 for the PANDA Collaboration

2 Overview Physics topics @ PANDA Form Factors Drell-Yan process and background Hypernuclei PANDA spectrometer Summary

3 Primary beams: Proton Heavy Ions Factor 100-1000 over present in intensity Future GSI and Facility for Antiproton and Ion Research Secondary Beams: Radioactive beams Antiprotons 3 - 30 GeV 1-2 10 7 /s Storage and Cooler Rings: Radioactive beams e – A collider 10 11 stored and cooled 0.8 - 14.5 GeV antiprotons

4 High Energy Storage Ring HESR High res. mode: L = 10 31 cm -2 s -1  p/p < 10 -5 High lum. mode: L = 2·10 32 cm -2 s -1  p/p < 10 -4 Cooling: electron/stochastic P max = 15 GeV/c L max = 2·10 32 cm -2 s -1 Ø < 100  m  p/p < 10 -5 internal target Characteristics 10 11 stored and cooled 0.8-15 GeV/c antiprotons

5 Antiproton power pbar beams can be cooled -> excellent resonance resolution Preliminary expectation

6 The PANDA Physics Confinement Why are there no free quarks? Hadron mass Where is the mass of the proton coming from? Are there other color neutral objects? What is the structure of the nucleon? What are the spin degrees of freedom? J. Ritman, Status of PANDA, 8th International Workshop on Heavy Quarkonium 2011

7 Meson spectroscopy*: D mesons charmonium glueballs, hybrids, tetraquarks, molecules Charmed and multi-strange baryon spectroscopy* Electromagnetic processes (FF, pp → e + e -, pp → , Drell-Yan) Properties of single and double hypernuclei Properties of hadrons in nuclear matter The PANDA Physics * Presented by V. Mochalov

8 ppbar Cross Section

9 ppbar Cross Section–Exclusive Final States

10 The PANDA Potential All J PC allowed for qq are accessible in pp T. Johansson, PANDA at FAIR, Excited QCD 2012, Peniche (Portugal) Formation J PC not allowed for qq possible Production

11 Meson Spectroscopy

12 The New XYZ States

13 Discovery of Z c ± (3900)

14 The experimental data set available is far from being complete. All strange hyperons and single charmed hyperons are energetically accessible in pp collisions at PANDA. By comparing several reactions involving different quark flavours the OZI rule and its possible violation, can be tested In PANDA pp  ΛΛ, ΛΞ, ΛΞ, ΞΞ, ΣΣ, ΩΩ, Λ c Λ c, Σ c Σ c, Ω c Ω c can be produced allowing the study of the dependences on spin observables. QCD Dynamics

15 E. Tomasi-Gustafsson, M.P. Rekalo, PLB 504 (2001) 291 Generator: |G M | = 22.5 (1 + q 2 / 0.71) -2 (1 + q 2 / 3.6) -1  = |G E |/|G M | lower sensitivity @ higher q 2 M. Sudol et al., EPJ A44 (2010) 373 p+pbar -> e+e- events generation L = 2  10 32 cm  s  → 2 fb -1 in  100 days

16 R=|G E |/|G M | BaBAR PS170 PANDA sim L = 2  10 32 cm  s  → 2 fb -1 in  100 days M. Sudol et al., EPJ A44 (2010) 373 BABAR: B. Aubert et al. PRD 73 (2006) 012005 PS170: G. Bardin et al., NPB 411 (1994) 3 pQCD inspired: V. A. Matveev et al., LNC 7 (1973) 719 S. J. Brodsky et al., PRL 31 (1973) 1153 VDM: F. Iachello, PLB 43 (1973) 191 Extended VDM: E.L.Lomon, PRC 66 (2002) 045501 Individual determination of |G E | and |G M | up to q 2  14 (GeV/c) 2 !! PANDA Scenario: Expected Results

17 M. Sudol et al., EPJ A44 (2010) 373 L = 2  10 32 cm  s  → 2 fb -1 in  100 days Absolute  accessible up to q 2  28 (GeV/c) 2 BABAR: B. Aubert et al. PRD 73 (2006) 012005 E835: M. Andreotti et al., PLB 559 (2003) 20 M. Ambrogiani et al., PRD 60 (1999) 032002 Fenice: A. Antonelli et al., NPB 517 (1998) 3 PS170: G. Bardin et al., NPB 411 (1994) 3 E760: T. A. Armstrong et al., PRD 56 (1997) 2509 CLEO: T. K. Pedlar et al., PRL 95 (2005) 261803 DM1: B. Delcourt et al., PLB 86 (1979) 395 DM2: D. Bisello et al., NPB 224 (1983) 379 BES: M. Ablikim et al., PLB 630 (2005) 14 PANDA Scenario: Expected Results

18 E. Tomasi-Gustafsson, 12th International Conference on Nuclear Reaction Mechanisms, Villa Monastero, Varenna, Italy, 15 - 19 Jun 2009, pp.447, arXiv:0907.4442v1 [nucl-th] L = 2  10 32 cm  s  → 2 fb -1 in  100 days BABAR: B. Aubert et al. PRD 73 (2006) 012005 E835: M. Andreotti et al., PLB 559 (2003) 20 M. Ambrogiani et al., PRD 60 (1999) 032002 Fenice: A. Antonelli et al., NPB 517 (1998) 3 PS170: G. Bardin et al., NPB 411 (1994) 3 E760: T. A. Armstrong et al., PRD 56 (1997) 2509 CLEO: T. K. Pedlar et al., PRL 95 (2005) 261803 DM1: B. Delcourt et al., PLB 86 (1979) 395 DM2: D. Bisello et al., NPB 224 (1983) 379 BES: M. Ablikim et al., PLB 630 (2005) 14 Probing the Phragmèn-Lindel ö f theorem: PANDA Scenario: Asymptotic Behaviours

19 TMD: K T -dependent Parton Distributions Twist-2 PDFs Distribution functions Chirality even odd Twist-2 ULTULT,h1,h1, Transversity Boer-Mulders Sivers

20 TMD PDF Investigation ➠ Process SIDIS → convolution with FF Drell-Yan → PDF only pp annihilations: each valence quark can contribute to the diagram ➠ Energies @ FAIR unique energy range up to s~30 GeV 2 with PANDA up to s~200 GeV 2 with PAX @ much higher energies → big contribution from sea-quarks

21 Drell-Yan Process Drell-Yan: pp ->  +  - X Collins-Soper frame Kinematics x 1,2 = mom fraction of parton 1,2  = x 1 x 2 = M 2 /s x F = x 1 - x 2 Collins-Soper frame: Phys. Rev. D16 (1977) 2219.

22 SINGLE-POLARISED UNPOLARISED. Drell-Yan Cross Section R.D. Tangerman and P.J. Mulders, Phys. Rev. D51, 3357-3372 (1995) U = N(cos2φ>0) D = N(cos2φ<0) Asymmetry

23 CERN NA51 450 GeV/c Fermilab E866 800 GeV/c Di-Lepton Production pp -> l + l - X A. Baldit et al., Phys. Lett. 332-B, 244 (1994) R.S. Towell et al., Phys. Rev. D 64, 052002 (2001)

24 Phase space for Drell-Yan processes x 1,2 = mom fraction of parton 1,2  = x 1 x 2 x F = x 1 - x 2  = const: hyperbolae x F = const: diagonal PAX @ HESR symmetric HESR collider 1 1.5 GeV/c 2 ≤ M  ≤ 2.5 GeV/c 2 PANDA

25 Drell-Yan Process and Background Background studies: needed rejection factor of 10 7 Drell-Yan: pp ->  +  - X cross section   1 nb @ s = 30 GeV 2 Background: pp ->  +  - X, 2  + 2  - X,…… cross section   20-30  b m  = 105 MeV/c 2 ; m  145 MeV/c 2 average primary pion pairs:  1.5

26 DY Asymmetries @ Vertex UNPOLARISEDSINGLE-POLARISED 500KEv included in asymmetries Acceptance corrections crucial! 1 < q T < 2 GeV/c 2 < q T < 3 GeV/c xPxP xPxP xPxP xPxP xPxP xPxP Physics Performance Report for PANDA arXiv:0903.3905

27 R = L  ·σ· ɛ = 2·10 32 cm -2 s -1 × x 0.8·10 -33 cm 2 × 0.33 = 0.05 s -1 ~ 130 Kev/month Statistical errors for 500KEv generated xPxP ) ) xPxP xPxP Physics Performance Report for PANDA arXiv:0903.3905 DY Asymmetries @ Vertex

28 3 different systems contain double strangeness (S = -2) Doubly strange hypernucleus: Double hypernucleus: Exotic hyperatom : p p  n n p p   n n p  e-e- n p n Interactions:  - -nucleus: interplay between the Coulomb and nuclear potential Interactions:  - N Interactions:  From  - hypernucleus to  hypernucleus: after   N   STORI’11 - F. Iazzi Politecnico di Torino&INFN From hyperatom to  - hypernucleus:   absorption Double Strange Systems

29 in the region close to the nucleus: Atomic orbitals overlap nucleus: Coulomb and Nuclear interaction shift the levels and broad them shift and width can be measured (only last level ) p  e-e- n p n  - : M = 1.32132 [GeV/c 2 ];  = 16.39. 10 -11 [s]; S = -2 Stopped X - are captured into atomic (high) levels X - undergoes an hyperatomic cascade X-rays are emitted in the range 0÷1.2 MeV ( 12 C) Absorption from an atomic level into nucleus ends the atomic cascade Bohr radius in lowest levels(n=2,3): ≈ 15 – 25 [fm] STORI’11 - F. Iazzi Politecnico di Torino&INFN X-ray spectroscopy (from  - ) in the range: ≈ 0.1 – 1 [MeV] No existing data! Which Physics with Hyperatoms?

30 Physics (I): ΛΛ strong interaction (only possible in double hypernuclei) Quarks: s-s interaction YY potential: attractive/repulsive? In One Boson Exchange mechanism: ΛΛ  ΛΛ : only non strange, I =0 meson exchange (w,h...) hyperfragments distribution: dependence on YY potential Physics (II): ΛΛ weak interaction (only possible in double hypernuclei) Non Mesonic Hyperon Induced Decay: ΛΛ  Λ n : (expected Γ Λn << Γ free ) (p Λ/N = 433 MeV/c) ΛΛ  Σ - p : (expected Γ Σp << Γ free ) (p Σ/N = 321 MeV/c) Measurements Strong interaction: DB ΛΛ ( A Z ΛΛ ) = B ΛΛ ( A Z ΛΛ ) - 2B Λ ( A-1 Z Λ ) (from g spectroscopy) Weak interaction: momentum of p from  decay momentum of p from    – p momentum of  – from ,   decay p p   n n STORI’11 - F. Iazzi Politecnico di Torino&INFN Several A data  core of ΛΛ interaction Formed by X - p  ΛΛ reaction inside nucleus Which Physics with ΛΛ Hypernuclei?  B  B.E. A

31 The PANDA Detector STT Detectors Physics Performance Report for PANDA arXiv:0903.3905

32 The PANDA Detector STT Detectors Physics Performance Report for PANDA arXiv:0903.3905 Detector requirements: nearly 4  solid angle(partial wave analysis) high rate capability(2·10 7 annihilations/s) good PID( , e, , , K, p) momentum resolution(~1%) vertex info for D, K 0 S,  (cτ =123  m for D 0, p/m ≈ 2) efficient trigger(e, , K, D,  ) no hardware trigger(raw data rate ~ TB/s)

33 The Micro-Vertex Detector FAIRNESS2012, L. Zotti

34 The Micro-Vertex Detector FAIRNESS2012, L. Zotti

35 Tracking Detectors I. Lehmann, Spin-Praha 2012

36 Cherenkov Detectors I. Lehmann, Spin-Praha 2012

37 Electromagnetic Calorimeters I. Lehmann, Spin-Praha 2012

38 MDT layoutMDT cross section Muon Detector System Iarocci Tubes working in proportional mode Ar+CO 2 gas mixture Prototype ready FE electronics in production TDR for the PANDA Muon System, 2 nd Draft (May 2011) JINR - Dubna

39 Muon Detector Layout MDT’sWiresStrips Barrel21331706449916 End Cap61849448911 Muon Filter42433926876 Forward Range System57646087128 Total37513000872831 Range System Prototype JINR - Dubna

40 DIRC MVD EMC Physics Performance Report for PANDA arXiv:0903.3905STT PANDA PID Requirements: particle identification essential for PANDA momentum range 200 MeV/c – 10 GeV/c Extreme high rates 2·10 7 Hz good particle separation (K- e ) different detectors needed for PID Particle Identification

41 All the details of the P ANDA experimental program are reported in the “Physics Performance Report”. Within this document, we present the results of detailed simulations performed to evaluate detector performance on many benchmark channels. arXiv:0903.3905v1 PANDA Phyisics Performance Report

42 Summary  PANDA physics program  unique program accessible with antiproton beams  addresses key questions  high discovery potential  high statistics and high precision results  Beginning in 2018


Download ppt "The PANDA Experiment at FAIR Marco Destefanis Università degli Studi di Torino Hadron Structure 2013 Tatranské Matliare (Slovakia) June 30- July 04, 2013."

Similar presentations


Ads by Google