Presentation is loading. Please wait.

Presentation is loading. Please wait.

COMP3740 CR32: Knowledge Management and Adaptive Systems Data Mining outputs: What knowledge can Data Mining learn? By Eric Atwell, School of Computing,

Similar presentations


Presentation on theme: "COMP3740 CR32: Knowledge Management and Adaptive Systems Data Mining outputs: What knowledge can Data Mining learn? By Eric Atwell, School of Computing,"— Presentation transcript:

1 COMP3740 CR32: Knowledge Management and Adaptive Systems Data Mining outputs: What knowledge can Data Mining learn? By Eric Atwell, School of Computing, University of Leeds (including re-use of teaching resources from other sources, esp. Knowledge Management by Stuart Roberts, School of Computing, University of Leeds)

2 Data Mining, Knowledge Discovery, Text Mining Data mining is about discovering knowledge: patterns, correlations, predictive rules in a large data-set or corpus. For this we need: –Data mining techniques, algorithms, tools, eg WEKA, R, MatLab, … –A methodological framework to guide us in collecting data and finding useful models, CRISP-DM Data Mining was originally about learning patterns from DataBases, data structured as Records, Fields Knowledge Discovery is exotic term for DM??? Increasingly, data is unstructured text (WWW), so Text Mining is a new subfield of DM/KD, focussing on Knowledge Discovery from unstructured text data

3 Data Mining: Overview Concepts, Instances, Attributes Data Mining Concept Descriptions Each instance is an example of the concept to be learned or described. The instance is described by the values of its attributes.

4 instances Input to a data mining algorithm is in the form of a set of examples, or instances. Each instance is represented as a set of features or attributes. Usually this set takes the form of a flat file; each instance is a record in the file, each attribute is a field in the record. In text-mining, instance is word/term in a corpus. The concepts to be learned are formed from patterns discovered within the set of instances.

5 concepts The types of concepts we try to learn include: Key differences between 2 (or more) data-sets – Eg difference in sales by region this year compared to previous - Eg terms important in one corpus but not another Clusters or Natural partitions; –Eg cluster customers according to their shopping habits; - Eg semantic clusters: synonyms with similar COLLOCATIONS Rules for classifying examples into pre-defined classes. –Eg successful PhD student?: Mature student, IS, AI3n, 2i/1st => PhD -Eg predicting Part-of-Speech word-class of each word in a corpus: -Adj + X + Verb => X=Noun; -to + X + Adverb => X=Verb

6 More concepts The types of concepts we try to learn include: General Associations –Eg People who buy nappies are in general likely to also buy beer - Eg high-frequency terms tend to be grammatical, not meaningful Numerical prediction –Eg look for rules to predict what salary a graduate will get, given A level results, age, gender, programme of study and degree result – this may give us an equation: Salary = a*A-level + b*Age + c*Gender + d*Prog + e*Degree

7 DB Example: weather to play?

8 outlook temperature humidity windy {TRUE, play {yes, sunny,85,85,FALSE,no sunny,80,90,TRUE,no overcast,83,86,FALSE,yes rainy,70,96,FALSE,yes rainy,68,80,FALSE,yes rainy,65,70,TRUE,no overcast,64,65,TRUE,yes sunny,72,95,FALSE,no sunny,69,70,FALSE,yes rainy,75,80,FALSE,yes

9

10 In general, any DB records can be ARFFed Save records as plain text file, comma-separated values (csv format) … then the data (instances)

11 Concept-learning example Start with set of instances Use clustering algorithm to partition set

12 Concept-learning example Identify cluster centroids

13 Concept-learning example Clusters, represented by centroids are the learned concepts

14 Example use of clustering Point of sale data contains information about the buyer and the basket. We want to target advertising to different types of shopper. Cluster analysis groups shoppers into classes, each with distinctive characteristics. Cluster characteristics are examined to interpret what kind of advertising each group will respond to. Groups then related to where they live.

15 Output: Clusters Output can take the form of: –Classification of each instance according to the cluster number/name (like a dictionary/thesaurus) –Cluster centroids –Dendrogram depicting hierarchical partitioning: xcfydpokaembls

16 Example use: comparing data-sets Finding specialist terms, UK v US? Compare this months data with last months Compare with several previous months Notice new sales growth areas Trends – rise, fall, cyclical (eg turkey sales?) Key differences may denote clusters (eg ise/ize) size/scale of difference Aligned, parallel corpora used in Statistical Machine Translation, eg Google Translate

17 Output: differences between data-sets Key instances/attributes with most significant difference, eg highest Log-Likelihood score Groups or clusters of significant terms, eg names Trends over several data-sets: graphs Overall metrics of difference

18 Example use of classifying A large database of symptoms and diagnoses is available from medical records. We seek rules that will predict which disease someone has, given their symptoms. Or Given information about physical environment and crop yields – seek rules that will help us understand why some areas give higher yields than others.

19 Output: decision tree Outlook Humidity sunny high Play = no normal Play = yes Windy rainy true Play = no false Play = yes

20 About decision trees Non-leaf node represents a test on a particular attribute. Arcs represent the outcomes of the test. Tests on numerical attributes usually have binary outcome Tests on nominal attributes usually have one outcome for each element in the domain. The leaf nodes represent a class. Each path down the tree represents a prediction for assigning instances to classes

21 Output: classification rules If outlook = sunny and humidity = high then play = no If outlook = rainy and windy = true then play = no If outlook = overcast then play = yes If humidity = normalthen play = yes Default play = yes

22 About Classification rules Alternative to decision trees: –If then –Consequent indicates a class. –Usually the antecedent is a conjunction of conditions on attribute values. –Usually we interpret the set of rules to be a disjunction of the individual rules. Evaluation: Accuracy of a rule: –Ratio of number of instances it predicts correctly to total number of instances that match the antecedent. Advantages of rules: –Easier to read than trees –Can be more compact –Each rule represents a nugget of knowledge, with its own accuracy

23 A variant: rules with exceptions General form: –If A then B except if C then D Advantages: –Can be more compact than rules without exceptions –Closer to the way we organise our knowledge –Scales well as new instances are introduced.

24 Output: association rules Given point of sales data, seek any kind of dependencies between data items that will help us understand shopping behaviour. People who live by the sea and buy pet food go on fewer holidays Learned rules may or may not be interesting!

25 About association rules Similar to classification rules, but now consequent can predict any attribute, not just the class. Evaluation: Coverage (or support) of a rule: –The number of instances it correctly predicts Evaluation: Accuracy (or confidence) of a rule: –Ratio of number of instances it predicts correctly to total number of instances that match the antecedent.

26 Output: numerical prediction Best-fit equation e.g.linear: length = a + b*width + c*height Widely used in maths and stats ?not really data mining?

27 Example use of numerical prediction Given numerical information about physical environment and crop yields – seek rules that will help us predict crop yields for some new set of conditions.

28 Key points Data Mining tools semi-automate the process of discovering patterns in data. Tools differ in terms of what concepts they discover (differences, clusters, decision-trees, rules, numerical prediction)… … and in terms of the output they provide (eg clustering algorithms provide a set of centroids or a dendrogram) Selecting the right tools for the job is based on business objectives: what is the USE for the knowledge discovered

29 Self-test You should be able to: –Decide what attributes are relevant to the given data mining task –Decide which is the appropriate data mining technique for a given a problem defined in terms of business objectives. –Decide which is the most appropriate form of output.


Download ppt "COMP3740 CR32: Knowledge Management and Adaptive Systems Data Mining outputs: What knowledge can Data Mining learn? By Eric Atwell, School of Computing,"

Similar presentations


Ads by Google