Presentation is loading. Please wait.

Presentation is loading. Please wait.

SADC Course in Statistics Fertility Ideas (Session 18)

Similar presentations


Presentation on theme: "SADC Course in Statistics Fertility Ideas (Session 18)"— Presentation transcript:

1 SADC Course in Statistics Fertility Ideas (Session 18)

2 To put your footer here go to View > Header and Footer 2 Learning Objectives – this session At the end of this session, you will be able to utilise a variety of commonly-used summaries of fertility data discuss the data sources for, and interpretation of, these measures appreciate some of their limitations in terms of understanding real populations approaches to family formation

3 To put your footer here go to View > Header and Footer 3 Introduction Unlike with deaths, there is no probability of 1 in the study of fertility! The demographic section of this module is aiming towards the study of population projections ~ an important area in practice, where LT probabilities have a real role. We introduce fertility as a theme because it too is central in demographic work, and it too is an essential part of making population projections.

4 To put your footer here go to View > Header and Footer 4 Basic measures: CBR, GFR Crude birth rate (CBR) is the number of births per year per 1000 persons in pop.n. Very limited data requirements, but no other benefits. It ignores/conceals effects of e.g. M/F ratios, age composition of the pop.n, age at marriage etc. General fertility rate (GFR) is no. of births per year per 1000 women aged in the pop.n [unless an alternative to is stated]. Relates births to (effectively all) potential mothers.

5 To put your footer here go to View > Header and Footer 5 Basics: age-specific fertility rates Number of births in 1 year to mothers aged x (or in age group x to < x+n) per 1000 women of that age in the population. Defined in terms of mothers age at birth of child. Most often, the burden of data collection and presentation by single years of age is reduced and these rates are shown for 5 year age-groups; 15-19, , 25-29, 30-34, 35-39, (6 bands) and in some populations (7 bands)

6 To put your footer here go to View > Header and Footer 6 Illustration Artificial data shown opposite for 2 pop.ns with similar total childbearing (area under curves). The initially higher one ( ) has children born to women who are on average younger.

7 To put your footer here go to View > Header and Footer 7 Illustration Artificial data shown opposite for 2 pop.ns with similar total childbearing (area under curves). The initially higher one ( ) has children born to women who are on average younger. These could represent 2 cohorts in same population, the later-peaking one ( ) having child-bearing deferred e.g. by contraceptive use

8 To put your footer here go to View > Header and Footer 8 Basics: child-woman ratio Where birth registration is not complete, above are not directly available. A census or large, representative sample survey can yield the child-woman ratio i.e. ratio of number of children [surviving] under age 5 to number of women aged (or 49). This accounts for some of the under-five mortality, not purely fertility in terms of live births [is this good or bad? It measures something different which we might call net fertility (not a standard term!)]

9 To put your footer here go to View > Header and Footer 9 Basics: standardised fertility rates Directly and indirectly standardised birth and fertility rates work in the same way as for death rates, e.g. comparisons of populations with different age-structures are artificially made comparable by applying actual ASFRs to a common age- structure. Issues about choice of a common population are same as for death rates.

10 To put your footer here go to View > Header and Footer 10 Generation vs. calendar year Death happens to everyone, it happens once, and generally not at a time of the individuals choice! The number and spacing of children has more elements of choice as well as many uncertainties, especially if contraception is available, and economic opportunity offers alternatives to early motherhood. It is often desirable to look at the whole of a womans child-bearing history.

11 To put your footer here go to View > Header and Footer 11 Example of generation effects In Afristan the average age at first confinement was 20 for women born in 1950, 24 for those born in Variously attributed to changed contraceptive availability and/or employment opportunities for girls and/or changed social attitudes about family size and responsible parenthood and/or greater female participation in education (effects ? include increased social awareness, empowerment, biological knowledge, taboo on schoolgirl pregnancies)

12 To put your footer here go to View > Header and Footer 12 Age-period-cohort effects: 1 The accompanying handout Afristan_Generation_fert.xls shows the same set of age-specific fertility rates organised in two ways (i)rows as cohorts by mothers yr of birth (ii)rows as current time ~ the year of childbirth These yield two different generational summary statistics, both making some assumptions about pop.n size & mortality

13 To put your footer here go to View > Header and Footer 13 Age-period-cohort effects: 2 In the handout Afristan_Generation_fert.xls note there is some vagueness in common with genuine data of this type. If someone was aged in she could have been born between 1908 & 1918 i.e. the date attribution of the cohort is indicative, rather than very precise. Note that the figures shown in the handout are average rates per year across each of 5 years.

14 To put your footer here go to View > Header and Footer 14 Average completed family size For a birth cohort of mothers, the average completed family size adds the ASFRs for each of their reproductive years, collected over the relevant 35-year period e.g. 27x x5 + … /1000 = 2.43 This is a cohort measure of fertility, and represents the cohort reality, but it is only available after the cohort reaches the end of family formation i.e. after age 50

15 To put your footer here go to View > Header and Footer 15 Total fertility rate For a period e.g the total (period) fertility rate adds the ASFRs for women of each age e.g. 39x x5 +../1000 = This is a form of standardised fertility rate, where the standard pop.n has 1000 women at each age. It represents the average number of children that women who survive to age 50 would have if they were subject to the ASFRs throughout their reproductive years.

16 To put your footer here go to View > Header and Footer 16 Gross reproduction rate Based on replacing an adult woman in one generation as a reproductive engine by her daughter(s) in the next, the gross reproduction rate is the same as the TFR except it uses only female births, not both sexes. It is frequently expressed per 1 woman rather than per Taking (Greek sigma) to mean the sum from ages 15 to 49 inclusive, it can be expressed as GRR = f x where f x is the ASFR for age restricted to female births

17 To put your footer here go to View > Header and Footer 17 Net reproduction rate The GRR assumes daughters live to reproductive maturity, net reproduction rate argues that daughter only replaces mother if she survives till age her mother was when she was born. With single-year data, assume mother on average is halfway through her year aged x, so NRR = f x.l x+½ /l 0 f x.L x /l 0. Of course NRR > 1 suggests population increasing, < 1 decreasing … but

18 To put your footer here go to View > Header and Footer 18 Caution: 1 Even though a relatively complex set of ideas goes into a NRR, there are still very many assumptions e.g. that daughter generation will marry/reproduce in same proportion - and at same ages - as their mothers. This would not have worked well in most countries over the last 40 years!

19 To put your footer here go to View > Header and Footer 19 Caution: 2 Ideas above do not incorporate ideas about womens/couples ideas of a desirable completed family size. If they have such ambitions, parity-specific fertility rates and parity progression ratios may contain useful information about the conditional prob. that a woman aged x will have a further child, conditional on already having had m children.

20 To put your footer here go to View > Header and Footer 20 Some practical work follows …


Download ppt "SADC Course in Statistics Fertility Ideas (Session 18)"

Similar presentations


Ads by Google