Presentation is loading. Please wait.

Presentation is loading. Please wait.

Objectives Add and subtract rational expressions.

Similar presentations


Presentation on theme: "Objectives Add and subtract rational expressions."— Presentation transcript:

1 Objectives Add and subtract rational expressions.
Simplify complex fractions.

2 Adding and subtracting rational expressions is similar to adding and subtracting fractions. To add or subtract rational expressions with like denominators, add or subtract the numerators and use the same denominator.

3 Example 1A: Adding and Subtracting Rational Expressions with Like Denominators
Add or subtract. Identify any x-values for which the expression is undefined. x – 3 x + 4 + x – 2 x – 3 + x + 4 x – 2 Add the numerators. 2x – 5 x + 4 Combine like terms. The expression is undefined at x = –4 because this value makes x + 4 equal 0.

4 Example 1B: Adding and Subtracting Rational Expressions with Like Denominators
Add or subtract. Identify any x-values for which the expression is undefined. 3x – 4 x2 + 1 6x + 1 3x – 4 – x2 + 1 (6x + 1) Subtract the numerators. 3x – 4 – x2 + 1 6x – 1 Distribute the negative sign. –3x – 5 x2 + 1 Combine like terms. There is no real value of x for which x2 + 1 = 0; the expression is always defined.

5 Check It Out! Example 1a Add or subtract. Identify any x-values for which the expression is undefined. 6x + 5 x2 – 3 + 3x – 1 6x + 5 + x2 – 3 3x – 1 Add the numerators. 9x + 4 x2 – 3 Combine like terms. The expression is undefined at x = ± because this value makes x2 – 3 equal 0.

6 To add or subtract rational expressions with unlike denominators, first find the least common denominator (LCD). The LCD is the least common multiple of the polynomials in the denominators.

7 Example 3A: Adding Rational Expressions
Add. Identify any x-values for which the expression is undefined. x – 3 x2 + 3x – 4 + 2x x + 4 x – 3 (x + 4)(x – 1) + 2x x + 4 Factor the denominators. The LCD is (x + 4)(x – 1), so multiply by x – 3 (x + 4)(x – 1) + 2x x + 4 x – 1 2x x + 4 x – 1

8 Example 3A Continued Add. Identify any x-values for which the expression is undefined. x – 3 + 2x(x – 1) (x + 4)(x – 1) Add the numerators. 2x2 – x – 3 (x + 4)(x – 1) Simplify the numerator. Write the sum in factored or expanded form. 2x2 – x – 3 (x + 4)(x – 1) x2 + 3x – 4 or The expression is undefined at x = –4 and x = 1 because these values of x make the factors (x + 4) and (x – 1) equal 0.

9 Example 3B: Adding Rational Expressions
Add. Identify any x-values for which the expression is undefined. x x + 2 + –8 x2 – 4 x x + 2 + –8 (x + 2)(x – 2) Factor the denominator. x – 2 x x + 2 + –8 (x + 2)(x – 2) The LCD is (x + 2)(x – 2), so multiply by x x + 2 x – 2 x(x – 2) + (–8) (x + 2)(x – 2) Add the numerators.

10 Example 3B Continued Add. Identify any x-values for which the expression is undefined. Write the numerator in standard form. x2 – 2x – 8 (x + 2)(x – 2) (x + 2)(x – 4) (x + 2)(x – 2) Factor the numerator. Divide out common factors. x – 4 x – 2 The expression is undefined at x = –2 and x = 2 because these values of x make the factors (x + 2) and (x – 2) equal 0.

11 Check It Out! Example 3a Add. Identify any x-values for which the expression is undefined. 3x 2x – 2 + 3x – 2 3x – 3 3x 2(x – 1) + 3x – 2 3(x – 1) Factor the denominators. The LCD is 6(x – 1), so multiply by 3 and by 2. 3x 2(x – 1) 3x – 2 3(x – 1) 3 3x 2(x – 1) + 3x – 2 3(x – 1) 2

12 Check It Out! Example 3a Continued
Add. Identify any x-values for which the expression is undefined. 9x + 6x – 4 6(x – 1) Add the numerators. 15x – 4 6(x – 1) Simplify the numerator. The expression is undefined at x = 1 because this value of x make the factor (x – 1) equal 0.

13 Check It Out! Example 3b Add. Identify any x-values for which the expression is undefined. 2x + 6 x2 + 6x + 9 + x x + 3 2x + 6 (x + 3)(x + 3) + x x + 3 Factor the denominators. 2x + 6 (x + 3)(x + 3) + x x + 3 The LCD is (x + 3)(x + 3), so multiply by x (x + 3) x2 + 3x + 2x + 6 (x + 3)(x + 3) Add the numerators.

14 Check It Out! Example 3b Continued
Add. Identify any x-values for which the expression is undefined. x2 + 5x + 6 (x + 3)(x + 3) Write the numerator in standard form. (x + 3)(x + 2) (x + 3)(x + 3) Factor the numerator. Divide out common factors. x + 2 x + 3 The expression is undefined at x = –3 because this value of x make the factors (x + 3) and (x + 3) equal 0.

15 Check It Out! Example 4a Subtract Identify any x-values for which the expression is undefined. 3x – 2 2x + 5 5x – 2 2 The LCD is (2x + 5)(5x – 2), so multiply by and by 3x – 2 2x + 5 (5x – 2) 2 5x – 2 (2x + 5) 3x – 2 2x + 5 5x – 2 2 (3x – 2)(5x – 2) – 2(2x + 5) (2x + 5)(5x – 2) Subtract the numerators. Multiply the binomials in the numerator. 15x2 – 16x + 4 – (4x + 10) (2x + 5)(5x – 2)

16 Check It Out! Example 4a Continued
Subtract Identify any x-values for which the expression is undefined. 3x – 2 2x + 5 5x – 2 2 15x2 – 16x + 4 – 4x – 10 (2x + 5)(5x – 2) Distribute the negative sign. 5 2 2 5 The expression is undefined at x = – and x = because these values of x make the factors (2x + 5) and (5x – 2) equal 0.

17 Some rational expressions are complex fractions
Some rational expressions are complex fractions. A complex fraction contains one or more fractions in its numerator, its denominator, or both. Examples of complex fractions are shown below. Recall that the bar in a fraction represents division. Therefore, you can rewrite a complex fraction as a division problem and then simplify. You can also simplify complex fractions by using the LCD of the fractions in the numerator and denominator.

18 Example 5A: Simplifying Complex Fractions
Simplify. Assume that all expressions are defined. x + 2 x – 1 x – 3 x + 5 Write the complex fraction as division. x + 2 x – 1 x – 3 x + 5 ÷ Write as division. x + 2 x – 1 x + 5 x – 3 Multiply by the reciprocal. x2 + 7x + 10 x2 – 4x + 3 (x + 2)(x + 5) (x – 1)(x – 3) or Multiply.

19 Simplify. Assume that all expressions are defined.
Check It Out! Example 5a Simplify. Assume that all expressions are defined. x + 1 x2 – 1 x x – 1 Write the complex fraction as division. x + 1 x2 – 1 x x – 1 ÷ Write as division. x + 1 x2 – 1 x – 1 x Multiply by the reciprocal.

20 Check It Out! Example 5a Continued
Simplify. Assume that all expressions are defined. x + 1 (x – 1)(x + 1) x – 1 x Factor the denominator. 1 x Divide out common factors.

21 Simplify. Assume that all expressions are defined.
Check It Out! Example 5b Simplify. Assume that all expressions are defined. 20 x – 1 6 3x – 3 Write the complex fraction as division. 20 x – 1 6 3x – 3 ÷ Write as division. 20 x – 1 3x – 3 6 Multiply by the reciprocal.

22 Check It Out! Example 5b Continued
Simplify. Assume that all expressions are defined. 20 x – 1 3(x – 1) 6 Factor the numerator. 10 Divide out common factors.

23 Simplify. Assume that all expressions are defined.
Check It Out! Example 5c Simplify. Assume that all expressions are defined. x + 4 x – 2 1 2x x + Multiply the numerator and denominator of the complex fraction by the LCD of the fractions in the numerator and denominator. x + 4 x – 2 (2x)(x – 2) 1 2x x + The LCD is (2x)(x – 2).

24 Check It Out! Example 5c Continued
Simplify. Assume that all expressions are defined. (2)(x – 2) + (x – 2) (x + 4)(2x) Divide out common factors. 3x – 6 (x + 4)(2x) 3(x – 2) 2x(x + 4) or Simplify.

25 Lesson Quiz: Part I Add or subtract. Identify any x-values for which the expression is undefined. 3x2 – 2x + 7 (x – 2)(x + 1) x ≠ –1, 2 2x + 1 x – 2 + x – 3 x + 1 1. x x + 4 x + 36 x2 – 16 x – 9 x – 4 2. x ≠ 4, –4 3. Find the least common multiple of x2 – 6x and x2 + x – 2. (x – 5)(x – 1)(x + 2)

26 4. Simplify . Assume that all expressions are defined. 1 x
Lesson Quiz: Part II x + 2 x2 – 4 x x – 2 4. Simplify Assume that all expressions are defined. 1 x 5. Tyra averages 40 mi/h driving to the airport during rush hour and 60 mi/h on the return trip late at night. What is Tyra’s average speed for the entire trip? 48 mi/h


Download ppt "Objectives Add and subtract rational expressions."

Similar presentations


Ads by Google