Presentation is loading. Please wait.

Presentation is loading. Please wait.

ITEC 275 Computer Networks – Switching, Routing, and WANs Week 1 Instructor Professor D’Andrea Fall 2015.

Similar presentations


Presentation on theme: "ITEC 275 Computer Networks – Switching, Routing, and WANs Week 1 Instructor Professor D’Andrea Fall 2015."— Presentation transcript:

1 ITEC 275 Computer Networks – Switching, Routing, and WANs Week 1 Instructor Professor D’Andrea Fall 2015

2 Agenda Introductions Review policies, procedures, and expected outcomes Learning Activities Introduce homework problems Location of Power Point presentations http://cs.franklin.edu/~dandrear/itec275/_Fall_2015_N etwork_Presentations/Week_One_Network_ppt or.pptx

3 Introductions Professor Robert D’Andrea – Adjunct faculty at Franklin – Fall term, teach ITEC275 and ITEC 400 – Cell phone 614.519.5853 Industry experience in security, systems administration, network administration, software development, tester, and deployment of software and hardware systems. Domestic and international work

4 Introductions Program Chair Information Technology Professor Todd Whittaker – Todd.Whittaker@franklin.edu – Cell phone 614.918.8321

5 Administration Principles of Computer Networks Top-Down Network Design A systems analysis approach to enterprise network design (3rd ed.). Indianapolis, IN: Cisco Press. ISBN: 978-1-58720-283-4

6 Administration Principles of Computer Networks ITEC275 serves as an introduction to the function, design, administration, and implementation of computer networks. Topics include network infrastructure, addressing, sub-netting, architecture, protocols, applications, and the OSI networking model.

7 Administration Course Outcomes 1.Diagram an end-to-end network communication path, describing each intermediate step. 2.Design a small-scale network configuration, including addressing, routing, and switching. 3.Describe the functions of the TCP/IP and Ethernet protocols including select fields, flags, options, headers, and trailers for both.

8 Administration Course Outcomes (cont’d) 4.Distinguish between types of data elements (segments, packets, frames, and bits). 5.Map the key elements of the TCP/IP protocol suite to the OSI model.

9 Administration Academic integrity – Items on the Web can serve as “inspiration” for your solutions if: You understand the solution as if you had written it yourself. You cite your source of inspiration – Not citing your source can get you charged with cheating/plagiarism.

10 Administration Academic integrity – Items on the Web can serve as “inspiration” for your solutions if: You understand the solution as if you had written it yourself. You cite your source of inspiration – Not citing your source can get you charged with cheating/plagiarism. Note: if a homework problem says “research X,” or “investigate Y,” then I’m expecting a citation! Technically, you should cite your textbook on almost every HW assignment.

11 Administration Academic integrity – Other students cannot serve as a source for your “inspiration!" The closer you move toward sharing answers with or soliciting answers from another person (student or not), the more likely it is that you are cheating.

12 Administration Academic integrity – If you have a vague feeling that you wouldn’t want your instructor to know about what you’re doing… don’t do it. – When in doubt, ask your instructor.

13 Administration Points breakdown PctTypeCountEachTotal 20%Homework1020200 15%Labs350150 25% Design Projects 375,75,100250 30% Midterm/Final Exam 2150300 10% Adobe Connect 14Variable100 1000

14 Daily/weekly Activities Daily: Check for announcements in your email. Before class 1.Read the associated sections from the text books and key points 2.Read and consider the weekly homework problems After class 1.Complete the homework assignment 2.Work on any scheduled lab assignments 3.Note significant learning

15 Course Outcomes Upon successful completion of this course students will be able to: Determine an appropriate approach to design a network based on customer needs and consideration of financial and technological constraints. Identify the design considerations and tradeoffs for campus, LAN, WAN, MAN, and data center infrastructure models. Select appropriate WAN components used in a standard WAN architecture. Compare and contrast routing and addressing schemas and the mechanisms for implementing each one.

16 Course Outcomes Upon successful completion of this course students will be able to: Identify and describe the components and standards used for implementing telephony into a data network. Configure routers and switches using Cisco IOS commands. Effectively communicate how a network design plan meets a customer's connectivity needs.

17 COMP 204 Map protocols and addressing, routing, and switching into the appropriate layer of the OSI model. Identify the main characteristics of hubs, switches, and routers. Outline the features of the following TCP/IP protocols: UDP, TCP, IP. Explain the characteristics of virtual LANs (VLANs) and Spanning Tree Protocol (STP) and the advantages they provide.

18 Cisco Certification Design Associate (CCDA) The Associate-level certification are typically network design engineers, technicians, or support technicians. They are expected to design basic campus-type networks and be familiar with routing and switching, security, voice and video, wireless connectivity, and IP (both v4 and v6). They often work as part of a team with those who have higher-level Cisco certifications. Salary: $95,602

19 Top-Down Verses Bottom-up Network Design Top-down network design is an iterative process that recognizes a logical model and the physical design that can change as more or less information becomes available. Main goals of structured systems analysis. 1. Represent the user’s needs 2. Make the project manageable, using the latest techniques and tools available. Bottom-up network design is an unstructured approach to solving a network problem. This type of approach works on small or flat networks. Scalability isn’t a consideration when using this type of network design approach.

20 Top-Down Network Design Analyze your customers business goals. Business goals are the capability to run network applications to meet an organizations business objectives, within the business constraints. These constraints could be limited network personnel, budgets, and limited timeframe. Good network design subscribes to the customers requirements to the letter. This would include business and technical goals, requirements for availability, scalability, affordability, manageability, and security needs. Some customers will specify a required level of network performance, referred to as service level.

21 Top-Down Network Design When a customer wants a quick fix design, it is referred to as a bottom-up network design. Associated with this type of design is unexpected scalability, poor performance, and does not meet the customers most important needs. Top-down network design is a methodology for designing networks at the upper layers of the OSI model before referring to lower layers (devices, cabling, and switch configurations). Top-down network design includes exploring organizational and group structures to find individuals the network is being designed to provide a services and from whom the design should get valuable information to make the design a success.

22 Top-Down Network Design Top-down network design is iterative. Initially, it is important to get the overall view of the customers requirements. Later, after digesting the high abstractions of the design, then focus on the finer details of the design like protocol behavior, scalability requirements, and technology preferences. Top- down network design recognizes that the logical model and the physical design can change as more information becomes available. A top-down network design approach enables the designer to obtain “the big picture” initially, and then by drilling down for specific requirements and technical details. Top-down network design is a methodology that grew out of structured software programming and structured systems analysis.

23 Top-Down Network Design Top-down network design divides the project up into small logical pieces known as modules. These modules allow large projects to be more manageable and easier to debug.

24 Top-Down Network Design Modules are split into logical function entities. The System Development Life Cycle (SDLC) is a top-down network design approach made up of four major phases and are carried out in a cyclical fashion: 1. Analyze requirements: Interview users and technical personal to gain an understanding of their business and technical goals for new or existing networks. 2. Develop the logical design: Logical topology for the new or existing network, security, switching, routing protocols.

25 Top-Down Network Design Modules are split into logical function entities. 3. Develop the physical design: This phase addresses the specific technologies and products that are realized in the logical design are selected. 4. Test, optimize, and document the design: Update the documentation that represents the network design, create test scenarios, build a prototype or pilot network, optimize the network design.

26 Top-Down Network Design The major phases of the top-down network design repeats itself. The user and the network monitoring suggest enhancements or the need for new specifications.

27 Top-Down Network Design Network Design Plan Life Cycle (PDIOO) Plan: Identify the network requirements in this phase. Design: Complete the bulk of the logical and physical design. Implement: Implement the building of the proposed network design. Operate: Final test the effectiveness of the network design. This includes monitoring the network and services. Optimize: This phase is based on actual operations. Identifying and resolving problems that were encountered. Retire: When part or the whole network design no longer meets the needs of the company and users, this should be an avenue of consideration. This component is not officially part of the life cycle model.

28 Top-Down Network Design The Plan Design Implement Operate Optimize (PDIOO) network life cycle is one of many types of network life cycles. It is irrelevant which life cycle is used, as long as long as the network design implements a network design that is structured, planned, modularized, and that feedback from the user is used to enhance the new network design.

29 Top-Down Network Design Network Design Components Analyzing business goals: Knowing your customers business goals and constraints. With a thorough understanding of your customers business objectives, you will be able to provide a network design that will meet your customers approval. Working with your client: Research the type of business your client is in before meeting with them. Learn all that you can about his or her market, suppliers, services, and competitive advantage.

30 Top-Down Network Design Network Design Components Changes in enterprise network: Internal users is limited for todays network needs. Your customer now has to think about remote entries both domestically, mobile access, RFS, and globally. Security is a topic that cannot be underestimated in our current network environment. Network must make sense: Business leaders today are more involved with IT decisions than past administrations. Customers want to operate leaner in data center personnel, power usage, and technology for technology’s sake.

31 Top-Down Network Design Network Design Components Networks Offer a service: IT departments are more service oriented than they use to be in the past. – Governance refers to a focus on consistent, cohesive, policies, and processes that protect an organization from mismanagement and illegal operations of users of IT services. – Compliance refers to adherence to regulations that protect against fraud and the disclosure of private customer data. Need to Support Mobile Users: Network users expect network performance to be uniform, regardless of where the user or data resides.

32 Top-Down Network Design Network Design Components The Importance of Network Security and Resiliency: Enterprises have to protect themselves from internal, web, and external from more areas than past environments. Typical Network Design Business Goals: Listed on pages 13 and 14.

33 Top-Down Network Design Identify the scope of the network design project. Small in scope: Sales staff might be allowed to access the enterprise network via VPN Large in scope: Engineering personal and remote access through the Enterprise Edge Network designers should ask their customers to help them understand the scope of the network design project.

34 Top-Down Network Design Identify the scope of the network design project. Network design questions: 1. Is the design for a single segment 2. A set of LANs or WLANs 3. A set of WANs or private network 4. Remote-access networks 5. Entire enterprise network 6. A set of MANs

35 OSI Reference Model All People Seem To Need Data Processing Each layer provides a different level of abstraction Each layer has a well-defined function Layer boundaries are chosen to minimize the information flow between layer boundaries The number of layers is kept small enough to be feasible Physical Data Link Network Transport Session Presentation Application

36 OSI – Physical Layer Transmit bits over a communication channel Bits can be encoded in digital form (“0” or “1”) or analog (varied voltage) (did you buy your TV converter?) Does not have any knowledge of data that it transmits Examples of media: n twisted-pair cable n coaxial cable n fiber optics n wireless Physical Data Link Network Transport Session Presentation Application

37 OSI – Data Link Layer The bits that are send or received in the Physical Layer are grouped in logical units called frames The beginning and end of each frame is usually marked by special characters Examples: Ethernet Token Ring FDDI ISDN Physical Data Link Network Transport Session Presentation Application

38 OSI – Network Layer Makes it possible to send units of information (packets) across different network (routing) Uniform addressing scheme Helps eliminate network congestion Regulate flow of data Examples: IP IPX (Novell anyone?) Physical Data Link Network Transport Session Presentation Application

39 OSI – Transport Layer Ensures reliable delivery of packets Error recovery Multiplexing the network connection (the use of the network by multiple applications simultaneously) Examples: TCP UDP SPX (yeah, that Novell thing) Physical Data Link Network Transport Session Presentation Application

40 OSI – Session Layer Provides enhanced session services Examples: Telnet session FTP session rlogin session Cookies (web) Physical Data Link Network Transport Session Presentation Application

41 OSI – Presentation Layer Manages the way data is represented: Encryption Encoding Examples: ASCII EBCDIC HTML XML Physical Data Link Network Transport Session Presentation Application

42 OSI – Application Layer Provides a protocol for a certain application Examples: DNS HTTP FTP SMTP TELNET SNMP Physical Data Link Network Transport Session Presentation Application

43 OSI versus TCP/IP Physical Data Link Network Transport Session Presentation Application Network Access Internet Transport Application

44 TCP/IP Model Boundaries Network Access Internet Transport Application Application address (port) for TCP and UDP MAC address (NIC ) IP address (host)

45 Protocol Data Unit (PDU) Contains information about the source and destination of a message in the header. http://en.wikipedia.org/wiki/TCP/IP_model

46 Evaluate Business Constraints Company Politics Throughout your discussion with the customer, try to learn who the individuals are that do the authorization, buying process, and fiscal period when buying occurs Be on the alert for: Hidden agendas Turf wars Biases Group relations Individuals within the company that could cause the network project to fail (engineers or managers) Number of employees affected by the new design Customers preference towards the use of certain vendor’s,

47 Evaluate Business Constraints Company Politics Strategic business or IT plan Customers preference towards the use of certain protocols Forbidden technologies Are there governmental guidelines that need to be followed Determine the amount of risk the customer is willing to tolerate Determine the group that controls the budget

48 Evaluate Project Scheduling Review with Customer Timeframe for project Identify due date Identify the implementation dates What are the minor and major milestones

49 Devices - Network Terminology Domain: A specific part of a network Bandwidth: The amount of data that can be carried across a network in a given period of time. Unicast data: Data meant for a specific device Broadcast data: Data meant for all devices Multicast data: Data that is meant for a specific group of devices Bandwidth domain: All devices that share the same bandwidth (Collision domain) Broadcast domain: All devices that receive each other’s broadcasts and multicasts

50 Devices - Network Terminology Governance: Focuses on consistency, stability in decisions, policies, and processes that protect a company from being mismanaged and involved in illegal activities of users of IT services. Compliance: The agreement to follow regulations that protect against fraud and the privacy of private customer information.

51 Devices - Hubs Layer 1 device – Also known as repeaters Connects multiple devices so that they are logically on one LAN Has no intelligence – Sends data received on one port to all other ports – Devices connected receive all data other connections send – All devices are on one collision and broadcast domain

52 Devices - Switches Layer 2 device Segregates multiple devices into smaller LANs Has some intelligence – Reads source and destination MAC addresses and sends data to the appropriate port based on that – All devices connected to one switch port are in the same collision domain – Devices connected to individual switch ports are in their own collision domain – All devices connected to a switch are in the same broadcast domain

53 Devices – Multilayer Switches Does all that a layer 2 does, but adds layer 3 and 4 capabilities Acts as a router with some functions in hardware when used for VLAN functions – Groups ports into one or more VLANs that are configured (using management software) so that they can communicate as if they were attached to the same wire – VLANs are identified by different IP ranges – Trunk – A port that carries more than one VLAN between switches

54 VLANs Physical LAN vs. Logical VLAN

55 Devices - Routers Layer 3 device Network perimeter device Has much more intelligence than switches – Reads source and destination logical addresses and sends data only where it is needed – Transfers data between LANS but blocks broadcasts – All devices connected to one router port are in the same collision/broadcast domain

56 Switching Switches learn which devices are connected their ports by examining traffic

57 IPv4 Addressing Class A – Provides 16M hosts – Range of addresses: 1.0.0.0 through 126.0.0.0 – Mask 255.0.0.0 – Restricted addresses 10.0.0.0 – 10.255.255.255 Class B – Provides 65K hosts – Range of addresses: 128.0.0.0 through 191.255.0.0 – Mask 255.255.0.0 – Restricted addresses 172.16.0.0 – 172.31.255.255 Class C – Provides 254 hosts – Range of addresses: 192.0.0.0 through 223.255.255.0 – Mask 255.255.255.0 – Restricted addresses 192.168.0.0 – 192.168.255.255

58 Mask Notation Values – Network = 1 – Host = 0 Classful example (Class B address) – 128.35.17.25 – 255.255.0.0 – 11111111.11111111.00000000.00000000 Subnets – borrow bits – 255.255.128.0 – 11111111.11111111.10000000.00000000 – 128.35.17.25/17 (VLSM/CIDR)

59 Terms Service level is when a customer specifies a required level of network performance (QoS).

60 This Week’s Outcomes Evaluating business goals and constraints OSI Model TCP Model Network Devices Definitions Networking Switching Addressing

61 Software required Provided CD\resources\software – Visio 2007 Instructions - InstallingMSVisio2007.pdf CISCO.vss – Documents\MyShapes – MIMIC Virtual Lab MIMIC software installation is NOT required Virtual Machine – VMware View Client v4.6 is needed – Download from http://vlab.franklin.eduhttp://vlab.franklin.edu – System provisioning takes some time – Logins may not work until week 2 or 3 Purchase (If desired) – Instructions – installvlab.pdf

62 Due this week Software installation (no points) Review course goals and objectives

63 Next week Read chapters 1 and 2 in Top-Down Network Design 1-3 – Concept questions 1 Adobe Connect session 2

64 Q & A Questions, comments, concerns?


Download ppt "ITEC 275 Computer Networks – Switching, Routing, and WANs Week 1 Instructor Professor D’Andrea Fall 2015."

Similar presentations


Ads by Google