Download presentation

Presentation is loading. Please wait.

1
**Hierarchical Models and**

Variance Components Will Penny Wellcome Department of Imaging Neuroscience, University College London, UK SPM Course, London, May 2003

2
**Outline Random Effects Analysis General Framework**

Summary statistic approach 2nd level) General Framework Multiple variance components and Hierarchical models Multiple variance components F-tests and level Modelling fMRI serial level Hierarchical models for Bayesian Inference SPMs versus PPMs

3
**Outline Random Effects Analysis General Framework**

Summary statistic approach 2nd level) General Framework Multiple variance components and Hierarchical models Multiple variance components F-tests and level Modelling fMRI serial level Hierarchical models for Bayesian Inference SPMs versus PPMs

4
**Random Effects Analysis:Summary-Statistic Approach**

1st Level nd Level Data Design Matrix Contrast Images 1 ^ SPM(t) 1 ^ 2 ^ 2 ^ 11 ^ 11 ^ ^ One-sample level 12 ^ 12 ^

5
**Validity of approach ^ ^ Gold Standard approach is EM – see later –**

estimates population mean effect as MEANEM the variance of this estimate as VAREM For N subjects, n scans per subject and equal within-subject variance we have VAREM = Var-between/N + Var-within/Nn In this case, the SS approach gives the same results, on average: Avg[a] = MEANEM Avg[Var(a)] =VAREM In other cases, with N~12, and typical ratios of between-subject to within-subject variance found in fMRI, the SS approach will give very similar results to EM. ^ ^

6
**Example: Multi-session study of auditory processing**

SS results EM results Friston et al. (2003) Mixed effects and fMRI studies, Submitted.

7
**Two populations Estimated population means Contrast images Two-sample**

level

8
**Outline Random Effects Analysis General Framework**

Summary statistic approach 2nd level) General Framework Multiple variance components and Hierarchical models Multiple variance components F-tests and level Modelling fMRI serial level Hierarchical models for Bayesian Inference SPMs versus PPMs

9
**The General Linear Model**

y = X + e N N L L N 1 Error covariance N 2 Basic Assumptions Identity Independence N We assume ‘sphericity’

10
**Multiple variance components**

y = X + e N N L L N 1 Error covariance N Errors can now have different variances and there can be correlations N We allow for ‘nonsphericity’

11
**Non-Sphericity Errors are independent but not identical**

Errors are not independent and not identical Error Covariance

12
**General Framework Multiple variance components Hierarchical Models**

at each level With hierarchical models we can define priors and make Bayesian inferences. If we know the variance components we can compute the distributions over the parameters at each level.

13
**Estimation EM algorithm Friston, K. et al. (2002), Neuroimage ( ) å y**

E-Step ( ) y C X T 1 - = e q h M-Step r for i and j { } { Q tr J g i j ij k å + l Friston, K. et al. (2002), Neuroimage

14
**Algorithm Equivalence**

Parametric Empirical Bayes (PEB) Hierarchical model EM=PEB=ReML Restricted Maximimum Likelihood (ReML) Single-level model

15
**Outline Random Effects Analysis General Framework**

Summary statistic approach 2nd level) General Framework Multiple variance components and Hierarchical models Multiple variance components F-tests and level Modelling fMRI serial level Hierarchical models for Bayesian Inference SPMs versus PPMs

16
**Non-Sphericity Errors are independent but not identical**

Errors are not independent and not identical Error Covariance

17
**Non-Sphericity Error can be Independent but Non-Identical when…**

1) One parameter but from different groups e.g. patients and control groups 2) One parameter but design matrices differ across subjects e.g. subsequent memory effect

18
**Non-Sphericity Error can be Non-Independent and Non-Identical when…**

1) Several parameters per subject e.g. Repeated Measurement design 2) Conjunction over several parameters e.g. Common brain activity for different cognitive processes 3) Complete characterization of the hemodynamic response e.g. F-test combining HRF, temporal derivative and dispersion regressors

19
**Example I U. Noppeney et al.**

Stimuli: Auditory Presentation (SOA = 4 secs) of (i) words and (ii) words spoken backwards Subjects: (i) 12 control subjects (ii) 11 blind subjects jump touch koob “click” Scanning: fMRI, 250 scans per subject, block design Q. What are the regions that activate for real words relative to reverse words in both blind and control groups?

20
**Independent but Non-Identical Error**

1st Level Controls Blinds 2nd Level Controls and Blinds Conjunction between the 2 groups

21
**Example 2 U. Noppeney et al.**

Stimuli: Auditory Presentation (SOA = 4 secs) of words motion sound visual action jump touch “jump” “click” “pink” “turn” “click” Subjects: (i) 12 control subjects Scanning: fMRI, 250 scans per subject, block design Q. What regions are affected by the semantic content of the words ?

22
**= = = ? ? ? Non-Independent and Non-Identical Error**

1st Leve visual sound hand motion ? = ? = ? = 2nd Level F-test

23
**Example III U. Noppeney et al.**

Stimuli: (i) Sentences presented visually (ii) False fonts (symbols) Some of the sentences are syntactically primed Scanning: fMRI, 250 scans per subject, block design Q. Which brain regions of the “sentence reading system” are affected by Priming?

24
**Non-Independent and Non-Identical Error**

1st Level Sentence > Symbols No-Priming>Priming Orthogonal contrasts 2nd Level Conjunction of 2 contrasts Left Anterior Temporal

25
**Example IV Modelling serial correlation in fMRI time series**

Model errors for each subject as AR(1) + white noise.

26
**Outline Random Effects Analysis General Framework**

Summary statistic approach 2nd level) General Framework Multiple variance components and Hierarchical models Multiple variance components F-tests and level Modelling fMRI serial level Hierarchical models for Bayesian Inference SPMs versus PPMs

27
Bayes Rule

28
**Example 2:Univariate model**

Likelihood and Prior Posterior Relative Precision Weighting

29
**Example 2:Univariate model**

Likelihood and Prior AIM: Make inferences based on posterior distribution Similar expressions exist for posterior distributions in multivariate models Posterior But how do we compute the variance components or ‘hyperparameters’ ?

30
**Estimation EM algorithm Friston, K. et al. (2002), Neuroimage ( ) å y**

E-Step ( ) y C X T 1 - = e q h M-Step r for i and j { } { Q tr J g i j ij k å + l Friston, K. et al. (2002), Neuroimage

31
**Estimating mean and variance**

Maximum Likelihood (ML), maximises p(Y|m,b) Expectation-Maximisation (EM), maximises for ‘vague’ prior on m

32
**Estimating mean and variance**

For a prior on m with prior mean 0 and prior precision a Expectation-Maximisation (EM) gives where Larger a more shrinkage

33
**Estimating mean and variance at multiple voxels**

For a prior on m over voxels with prior mean 0 and prior precision a Expectation-Maximisation (EM) gives at voxel i=1..V, scan n=1..N where Prior precision can be estimated from data. If mean activation over all voxels is 0 then these EM estimates are more accurate than ML

34
**The Interface PEB WLS Parameters Parameters, and REML Hyperparameters**

No Priors Shrinkage priors

35
**Bayesian Inference 1st level = within-voxel Likelihood Shrinkage Prior**

In the absence of evidence to the contrary parameters will shrink to zero 2nd level = between-voxels

36
**Bayesian Inference: Posterior Probability Maps**

PPMs Posterior Likelihood Prior SPMs

37
**SPMs and PPMs PPMs: Show activations of a given size**

SPMs: show voxels with non-zero activations

38
**PPMs Advantages Disadvantages Use of shrinkage One can infer a cause**

priors over voxels is computationally demanding Utility of Bayesian approach is yet to be established One can infer a cause DID NOT elicit a response SPMs conflate effect-size and effect-variability P-values don’t change with search volume For reasonable thresholds have intrinsically high specificity

39
**Summary Random Effects Analysis Multiple variance components**

Summary statistic approach 2nd level) Multiple variance components F-tests and level Modelling fMRI serial level Hierarchical models for Bayesian Inference SPMs versus PPMs General Framework Multiple variance components and Hierarchical models

Similar presentations

OK

FMRI Modelling & Statistical Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Chicago, 22-23 Oct.

FMRI Modelling & Statistical Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Chicago, 22-23 Oct.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on high-level languages were developed for first-generation computer Electroluminescent display ppt on tv How to save ppt on ipad 2 Ppt on eco tourism in india Ppt on bluetooth communication devices Ppt on types of forest found in india Ppt on water scarcity Ppt on edge detection circuit Ppt on energy giving food list Ppt on group development tuckman