Download presentation

Presentation is loading. Please wait.

Published byNicholas Lucas Modified over 3 years ago

1
Choice of wavelength... n For diffraction of light, with condition a sin = n n For n=1, this gave a maximum value of for diffraction: sin = 1 a = n Realistically, sin n So separation must be same order as, but greater than, the wavelength of light.

2
If a < n Say we are dealing with light of wavelength 500nm n If the separation of the slits were 300nm, then from ( /a) > 1, so the only solution occurs if n=0 (equivalent to the direct, undiffracted beam).

3
If a >> n Say we are dealing with light of wavelength 500nm n Again using: If the separation of the slits were: 5000nm 10000nm20000nm n=1 =5.74º =2.86º =1.43º n=2 =11.54º =5.74º =2.86º n=3 =17.46º =8.63º =4.30ºetc.

4
If a >> n Thus, as a increases, the different diffraction orders tend towards a continuum - it would become very difficult to distinguish between them. n Try and work through similar examples for Braggs Law and X-ray diffraction. For example, look at a wavelength of 3.0Å and a d-spacing of 1.2Å. n Then consider a wavelength of 0.71Å and d-spacings of 10Å and above.

Similar presentations

OK

LIGHT Reflection and Refraction. Mirrors and highly polished opaque surfaces reflect light in predictable ways.

LIGHT Reflection and Refraction. Mirrors and highly polished opaque surfaces reflect light in predictable ways.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google