Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chemical Models of High Mass Young Stellar Objects Great Barriers in High Mass Star Formation H. Nomura 1 and T.J. Millar 2 1.Kyoto Univ. Japan, 2. Queen’s.

Similar presentations


Presentation on theme: "Chemical Models of High Mass Young Stellar Objects Great Barriers in High Mass Star Formation H. Nomura 1 and T.J. Millar 2 1.Kyoto Univ. Japan, 2. Queen’s."— Presentation transcript:

1 Chemical Models of High Mass Young Stellar Objects Great Barriers in High Mass Star Formation H. Nomura 1 and T.J. Millar 2 1.Kyoto Univ. Japan, 2. Queen’s Univ. Belfast, UK

2 §1 Introduction

3 I HC SMA1 n IRc6 Compact Ridge (Beuther et al. 2005, 2006) CH 3 OH CH 3 OCH 3 SO 2 13 CH 3 CN Orion KL, SMA Mm/sub-mm Obs. of Mol. Lines Unidentified lines (Fallscheer et al. 2009) IRDC18223-3, SMA CH 3 OH

4 AFGL 2591 by ISO C 2 H 2 5 HCN 2 (Knez et al. 2009) Infrared Obs. of Molecular Lines (Lahuis & van Dishoeck 2000) NGC7538IRS1 by IRTF/TEXES Orion KL by ISO (Lerate et al. 2006) Small hydrogenated, saturated molecules (Crockett et al. 2010) Orion KL by Herschel/HIFI

5 Origin of Abundant Molecules in HC ☆ ★ evaporation of icy mantles + subsequent gas-phase reactions abundant complex molecules prestellar star-formation protostellar &outflow(shock) freeze out & grain surface reactions evaporation of icy mantles Young Stellar Evolution X(M, hot core)~10-10 3 X(M, dark cloud) M: NH 3, H 2 S, CH 3 OH, (CH 3 ) 2 O etc. O H CO S H2OH2O CH 3 OH H2SH2S

6 Obs. of Icy Mantle Molecules W33A by ISO (Gibb et al. 2000) Hydrogenated, saturated molecules in ice (e.g., Spitzer: Boogert+ 2008, Pontpiddan+ 2008, Oberg+ 2008, AKARI: Aikawa+ 2009) Obs. O H CO N O H 2 O CO CH 3 OH N NH 3 H (Bottinelli et al. 2010) CH 3 OH & NH 3 Dust continuum CO (Caselli+ 1999, Tafalla+ 2004, …) L1498 by IRAM SVS 4-5 by Spitzer

7 Grain surface chemistry (e.g., Watanabe & Kouchi 2008) (Charnley 1997, 2001, 2005) grain surface CO H... Amino acids? Surface reactions in laboratory High mass YSOs are good targets for test

8 Hot Core Mol. in Various Objects (Cazaux et al. 2003) ~500AU CH 3 OH C 2 H 3 CN (Kuan et al. 2004) SMA H2SH2S Starburst galaxies (Minh et al. 2007) (e.g., Martin et al. 2006, 2008) NGC253 CMZ of Galactic Center (e.g., Requena-Torres+ 2008) Nearby extragalaxies NGC253, NGC4945, M82, IC342, Marrei2, NGC6946 Grain surface chemistry seems universal IRAS 16293-2422 IRAM

9 §2 Hot Core Chemistry

10 Hot Core Chemistry – Cold & Hot grain surface C, O, N, S, CO, … H Hydrogenated, saturated molecules CH 4, H 2 O, NH 3, H 2 S, CH 3 OH, … grain surface (Charnley+ 1992, Millar+ 1997, …) H 2 O H 3 O + destroy molecules NH 3 HCN, HC 3 N, CH 3 CN, … CH 4, C 2 H 2 ca rbon-chain mol. H 2 S SO, SO 2, … CH 3 OH CH 3 OCH 3, HCOOCH 3, … Prestellar Protostellar Grain surface T~10K Gas-phase reactions T>100K thermal evaporation from grains

11 Hot Core Chemistry – Warm unsaturated molecules CH 3 OCH 3, HCOOCH 3, … Thermal history & UV photons in star forming cores? (Oberg et al. 2009) CH 3, HCO, … CH 3 O grain surface (e.g., Hasegawa+ 1992, Garrod+ 2006, 2008, …) Surface reactions in laboratory Grain surface T~40K (Horn et al. 2004) UV CH 3 OH 2 + +H 2 CO HCOOCH 3 : inefficient UV

12 §3 Physical and Chemical Models of High Mass YSOs

13 Physical & Chemical Models of YSOs Line radiative transfer comparison with obs. ⇔ Chemical reaction network + radiative transfer T, hydrodynamics , v Physical structure (T dust, T gas,  gas, v gas ) gas-phase, grain surface, gas-grain interaction + constraint grain surface + + Get rid of activation barrier of reactions ★ T dust T gas v gas Transport molecules & dust grains Thermal evaporation Mobility on grains UV

14 Chemical Structure of YSOs Molecules are abundant at cloud center CH 3 OH H 2 CO HCN CH 3 CN HCOOCH 3 r [pc] 10 4 yr CH 3 OH H 2 CO HCN CH 3 CN HCOOCH 3 r [pc] 10 4 yr r ★ (Nomura & Millar 2004) Mantle mol. H2OH2O H 2 O, CH 3 OH NH 3, CO 2 H 2 S, O 2 H 2 O, CH 3 OH NH 3, CO 2 H2SH2S O2O2 T dust

15 Effect of v infall on low mass YSO chem. (Aikawa+ 2008) CH 3 OH CH 3 OCH 3 :  gas-phase chem >  infall  gas-phase chem ~10 4-5 yr,  infall ~10 3 yr (~300AU/1km) Warm grain surface reactions respond to formation of unsaturated molecules? physical model radiative hydrodynamic simulation Another pathway to unsaturated molecule formation? t [yr]

16 Dependence on warm-up time High mass:  star 10 7 yr gas-phase reaction grain surface reaction HCOOH formation (Garrod + 2008) HCOOH (ice) HCOOH (gas) Short (5x10 4 yr) t [yr] T [K] Abundances of unsaturated molecules in gas & ice Grain surface chemistry & Stellar evolution time ? HCOOH (ice) HCOOH (gas) Long (1x10 6 yr) t [yr] T [K]

17 UV,X-rays Chemical Structure of Young Disks inner disk H2OH2O CH 3 OH NH 3 dust near midplane O H CO N dust outer disk CN, C 2 H HCN, H 2 CO, etc. surface (e.g., Markwick+2002, Aikawa+ 2002, Bergin+ 2007) CO R<300AU CO R<10AU (Walsh, Millar, HN 2010, in press) Photo- dissociate Frozen- out accretion Warm grain surface reactions during accretion?

18 Chemical Structure of Young Disks (Heinzellar, HN, Walsh, Millar 2010, in prep.) (Okamoto+ 2009) NH 3, no motion (low mass star) NH 3, vertical motion (low mass star) Photo- evaporation? Transport of mol. from disk midplane to surface layer Diagnose high mass disk chemistry & physics by ALMA

19 §4 Summary Hot Core Chemistry Grain surface reactions + desorption from grains + gas-phase reactions Grain surface chemistry seems universal Physical & chemical models of high (& low) mass YSOs Certain molecules are abundant near central star Role of warm surface chemistry? Dependence on warm-up time Stellar evolution, accretion velocity in disks Diagnose physics & chemistry of YSOs by ALMA_


Download ppt "Chemical Models of High Mass Young Stellar Objects Great Barriers in High Mass Star Formation H. Nomura 1 and T.J. Millar 2 1.Kyoto Univ. Japan, 2. Queen’s."

Similar presentations


Ads by Google