Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 10 Photosynthesis. Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy.

Similar presentations


Presentation on theme: "Chapter 10 Photosynthesis. Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy."— Presentation transcript:

1 Chapter 10 Photosynthesis

2 Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy Directly or indirectly, photosynthesis nourishes almost the entire living world Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

3 Autotrophs sustain themselves without eating anything derived from other organisms Autotrophs are the producers of the biosphere, producing organic molecules from CO 2 and other inorganic molecules Almost all plants are photoautotrophs, using the energy of sunlight to make organic molecules from H 2 O and CO 2 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

4 Photosynthesis occurs in plants, algae, certain other protists, and some prokaryotes These organisms feed not only themselves but also most of the living world BioFlix: Photosynthesis BioFlix: Photosynthesis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

5 Fig (a) Plants (c) Unicellular protist 10 µm 1.5 µm 40 µm (d) Cyanobacteria (e) Purple sulfur bacteria (b) Multicellular alga

6 Fig. 10-2a (a) Plants

7 Fig. 10-2b (b) Multicellular alga

8 Fig. 10-2c (c) Unicellular protist 10 µm

9 Fig. 10-2d 40 µm (d) Cyanobacteria

10 Fig. 10-2e 1.5 µm (e) Purple sulfur bacteria

11 Heterotrophs obtain their organic material from other organisms Heterotrophs are the consumers of the biosphere Almost all heterotrophs, including humans, depend on photoautotrophs for food and O 2 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

12 Concept 10.1: Photosynthesis converts light energy to the chemical energy of food Chloroplasts are structurally similar to and likely evolved from photosynthetic bacteria The structural organization of these cells allows for the chemical reactions of photosynthesis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

13 Chloroplasts: The Sites of Photosynthesis in Plants Leaves are the major locations of photosynthesis Their green color is from chlorophyll, the green pigment within chloroplasts Light energy absorbed by chlorophyll drives the synthesis of organic molecules in the chloroplast CO 2 enters and O 2 exits the leaf through microscopic pores called stomata Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

14 Chloroplasts are found mainly in cells of the mesophyll, the interior tissue of the leaf A typical mesophyll cell has 30–40 chloroplasts The chlorophyll is in the membranes of thylakoids (connected sacs in the chloroplast); thylakoids may be stacked in columns called grana Chloroplasts also contain stroma, a dense fluid Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

15 Fig Leaf cross section Vein Mesophyll Stomata CO 2 O2O2 Chloroplast Mesophyll cell Outer membrane Intermembrane space 5 µm Inner membrane Thylakoid space Thylakoid Granum Stroma 1 µm

16 Fig. 10-3a 5 µm Mesophyll cell Stomata CO 2 O2O2 Chloroplast Mesophyll Vein Leaf cross section

17 Fig. 10-3b 1 µm Thylakoid space Chloroplast Granum Intermembrane space Inner membrane Outer membrane Stroma Thylakoid

18 Tracking Atoms Through Photosynthesis: Scientific Inquiry Photosynthesis can be summarized as the following equation: 6 CO H 2 O + Light energy C 6 H 12 O O H 2 O Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

19 The Splitting of Water Chloroplasts split H 2 O into hydrogen and oxygen, incorporating the electrons of hydrogen into sugar molecules Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

20 Reactants: Fig CO 2 Products: 12 H 2 O 6 O 2 6 H 2 O C 6 H 12 O 6

21 Photosynthesis as a Redox Process Photosynthesis is a redox process in which H 2 O is oxidized and C O 2 is reduced Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

22 The Two Stages of Photosynthesis: A Preview Photosynthesis consists of the light reactions (the photo part) and Calvin cycle (the synthesis part) The light reactions (in the thylakoids): Split H 2 O Release O 2 Reduce NADP + to NADPH Generate ATP from ADP by photophosphorylation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

23 The Calvin cycle (in the stroma) forms sugar from CO 2, using ATP and NADPH The Calvin cycle begins with carbon fixation, incorporating CO 2 into organic molecules Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

24 Light Fig H2OH2O Chloroplast Light Reactions NADP + P ADP i +

25 Light Fig H2OH2O Chloroplast Light Reactions NADP + P ADP i + ATP NADPH O2O2

26 Light Fig H2OH2O Chloroplast Light Reactions NADP + P ADP i + ATP NADPH O2O2 Calvin Cycle CO 2

27 Light Fig H2OH2O Chloroplast Light Reactions NADP + P ADP i + ATP NADPH O2O2 Calvin Cycle CO 2 [CH 2 O] (sugar)

28 Concept 10.2: The light reactions convert solar energy to the chemical energy of ATP and NADPH Chloroplasts are solar-powered chemical factories Their thylakoids transform light energy into the chemical energy of ATP and NADPH Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

29 The Nature of Sunlight Light is a form of electromagnetic energy, also called electromagnetic radiation Like other electromagnetic energy, light travels in rhythmic waves Wavelength is the distance between crests of waves Wavelength determines the type of electromagnetic energy Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

30 The electromagnetic spectrum is the entire range of electromagnetic energy, or radiation Visible light consists of wavelengths (including those that drive photosynthesis) that produce colors we can see Light also behaves as though it consists of discrete particles, called photons Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

31 UV Fig Visible light Infrared Micro- waves Radio waves X-rays Gamma rays 10 3 m 1 m (10 9 nm) 10 6 nm 10 3 nm 1 nm 10 –3 nm 10 –5 nm nm Longer wavelength Lower energyHigher energy Shorter wavelength

32 Photosynthetic Pigments: The Light Receptors Pigments are substances that absorb visible light Different pigments absorb different wavelengths Wavelengths that are not absorbed are reflected or transmitted Leaves appear green because chlorophyll reflects and transmits green light Animation: Light and Pigments Animation: Light and Pigments Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

33 Fig Reflected light Absorbed light Light Chloroplast Transmitted light Granum

34 A spectrophotometer measures a pigments ability to absorb various wavelengths This machine sends light through pigments and measures the fraction of light transmitted at each wavelength Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

35 Fig Galvanometer Slit moves to pass light of selected wavelength White light Green light Blue light The low transmittance (high absorption) reading indicates that chlorophyll absorbs most blue light. The high transmittance (low absorption) reading indicates that chlorophyll absorbs very little green light. Refracting prism Photoelectric tube Chlorophyll solution TECHNIQUE

36 An absorption spectrum is a graph plotting a pigments light absorption versus wavelength The absorption spectrum of chlorophyll a suggests that violet-blue and red light work best for photosynthesis An action spectrum profiles the relative effectiveness of different wavelengths of radiation in driving a process Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

37 Fig Wavelength of light (nm) (b) Action spectrum (a) Absorption spectra (c) Engelmanns experiment Aerobic bacteria RESULTS Rate of photosynthesis (measured by O 2 release) Absorption of light by chloroplast pigments Filament of alga Chloro- phyll a Chlorophyll b Carotenoids

38 The action spectrum of photosynthesis was first demonstrated in 1883 by Theodor W. Engelmann In his experiment, he exposed different segments of a filamentous alga to different wavelengths Areas receiving wavelengths favorable to photosynthesis produced excess O 2 He used the growth of aerobic bacteria clustered along the alga as a measure of O 2 production Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

39 Chlorophyll a is the main photosynthetic pigment Accessory pigments, such as chlorophyll b, broaden the spectrum used for photosynthesis Accessory pigments called carotenoids absorb excessive light that would damage chlorophyll Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

40 Fig Porphyrin ring: light-absorbing head of molecule; note magnesium atom at center in chlorophyll a CH 3 Hydrocarbon tail: interacts with hydrophobic regions of proteins inside thylakoid membranes of chloroplasts; H atoms not shown CHO in chlorophyll b

41 Excitation of Chlorophyll by Light When a pigment absorbs light, it goes from a ground state to an excited state, which is unstable When excited electrons fall back to the ground state, photons are given off, an afterglow called fluorescence If illuminated, an isolated solution of chlorophyll will fluoresce, giving off light and heat Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

42 Fig (a) Excitation of isolated chlorophyll molecule Heat Excited state (b) Fluorescence Photon Ground state Photon (fluorescence) Energy of electron e–e– Chlorophyll molecule

43 A Photosystem: A Reaction-Center Complex Associated with Light- Harvesting Complexes A photosystem consists of a reaction-center complex (a type of protein complex) surrounded by light-harvesting complexes The light-harvesting complexes (pigment molecules bound to proteins) funnel the energy of photons to the reaction center Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

44 A primary electron acceptor in the reaction center accepts an excited electron from chlorophyll a Solar-powered transfer of an electron from a chlorophyll a molecule to the primary electron acceptor is the first step of the light reactions Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

45 Fig THYLAKOID SPACE (INTERIOR OF THYLAKOID) STROMA e–e– Pigment molecules Photon Transfer of energy Special pair of chlorophyll a molecules Thylakoid membrane Photosystem Primary electron acceptor Reaction-center complex Light-harvesting complexes

46 There are two types of photosystems in the thylakoid membrane Photosystem II (PS II) functions first (the numbers reflect order of discovery) and is best at absorbing a wavelength of 680 nm The reaction-center chlorophyll a of PS II is called P680 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

47 Photosystem I (PS I) is best at absorbing a wavelength of 700 nm The reaction-center chlorophyll a of PS I is called P700 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

48 Linear Electron Flow During the light reactions, there are two possible routes for electron flow: cyclic and linear Linear electron flow, the primary pathway, involves both photosystems and produces ATP and NADPH using light energy Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

49 A photon hits a pigment and its energy is passed among pigment molecules until it excites P680 An excited electron from P680 is transferred to the primary electron acceptor Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

50 Pigment molecules Light P680 e–e– 2 1 Fig Photosystem II (PS II) Primary acceptor

51 P680 + (P680 that is missing an electron) is a very strong oxidizing agent H 2 O is split by enzymes, and the electrons are transferred from the hydrogen atoms to P680 +, thus reducing it to P680 O 2 is released as a by-product of this reaction Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

52 Pigment molecules Light P680 e–e– Primary acceptor 2 1 e–e– e–e– 2 H + O2O2 + 3 H2OH2O 1/21/2 Fig Photosystem II (PS II)

53 Each electron falls down an electron transport chain from the primary electron acceptor of PS II to PS I Energy released by the fall drives the creation of a proton gradient across the thylakoid membrane Diffusion of H + (protons) across the membrane drives ATP synthesis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

54 Pigment molecules Light P680 e–e– Primary acceptor 2 1 e–e– e–e– 2 H + O2O2 + 3 H2OH2O 1/21/2 4 Pq Pc Cytochrome complex Electron transport chain 5 ATP Fig Photosystem II (PS II)

55 In PS I (like PS II), transferred light energy excites P700, which loses an electron to an electron acceptor P700 + (P700 that is missing an electron) accepts an electron passed down from PS II via the electron transport chain Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

56 Pigment molecules Light P680 e–e– Primary acceptor 2 1 e–e– e–e– 2 H + O2O2 + 3 H2OH2O 1/21/2 4 Pq Pc Cytochrome complex Electron transport chain 5 ATP Photosystem I (PS I) Light Primary acceptor e–e– P700 6 Fig Photosystem II (PS II)

57 Each electron falls down an electron transport chain from the primary electron acceptor of PS I to the protein ferredoxin (Fd) The electrons are then transferred to NADP + and reduce it to NADPH The electrons of NADPH are available for the reactions of the Calvin cycle Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

58 Pigment molecules Light P680 e–e– Primary acceptor 2 1 e–e– e–e– 2 H + O2O2 + 3 H2OH2O 1/21/2 4 Pq Pc Cytochrome complex Electron transport chain 5 ATP Photosystem I (PS I) Light Primary acceptor e–e– P700 6 Fd Electron transport chain NADP + reductase NADP + + H + NADPH 8 7 e–e– e–e– 6 Fig Photosystem II (PS II)

59 Fig Mill makes ATP e–e– NADPH Photon e–e– e–e– e–e– e–e– e–e– ATP Photosystem IIPhotosystem I e–e–

60 Cyclic Electron Flow Cyclic electron flow uses only photosystem I and produces ATP, but not NADPH Cyclic electron flow generates surplus ATP, satisfying the higher demand in the Calvin cycle Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

61 Fig ATP Photosystem II Photosystem I Primary acceptor Pq Cytochrome complex Fd Pc Primary acceptor Fd NADP + reductase NADPH NADP + + H +

62 Some organisms such as purple sulfur bacteria have PS I but not PS II Cyclic electron flow is thought to have evolved before linear electron flow Cyclic electron flow may protect cells from light-induced damage Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

63 A Comparison of Chemiosmosis in Chloroplasts and Mitochondria Chloroplasts and mitochondria generate ATP by chemiosmosis, but use different sources of energy Mitochondria transfer chemical energy from food to ATP; chloroplasts transform light energy into the chemical energy of ATP Spatial organization of chemiosmosis differs between chloroplasts and mitochondria but also shows similarities Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

64 In mitochondria, protons are pumped to the intermembrane space and drive ATP synthesis as they diffuse back into the mitochondrial matrix In chloroplasts, protons are pumped into the thylakoid space and drive ATP synthesis as they diffuse back into the stroma Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

65 Fig Key Mitochondrion Chloroplast CHLOROPLAST STRUCTURE MITOCHONDRION STRUCTURE Intermembrane space Inner membrane Electron transport chain H+H+ Diffusion Matrix Higher [H + ] Lower [H + ] Stroma ATP synthase ADP + P i H+H+ ATP Thylakoid space Thylakoid membrane

66 ATP and NADPH are produced on the side facing the stroma, where the Calvin cycle takes place In summary, light reactions generate ATP and increase the potential energy of electrons by moving them from H 2 O to NADPH Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

67 Fig Light Fd Cytochrome complex ADP + i H+H+ ATP P synthase To Calvin Cycle STROMA (low H + concentration) Thylakoid membrane THYLAKOID SPACE (high H + concentration) STROMA (low H + concentration) Photosystem II Photosystem I 4 H + Pq Pc Light NADP + reductase NADP + + H + NADPH +2 H + H2OH2O O2O2 e–e– e–e– 1/21/

68 Concept 10.3: The Calvin cycle uses ATP and NADPH to convert CO 2 to sugar The Calvin cycle, like the citric acid cycle, regenerates its starting material after molecules enter and leave the cycle The cycle builds sugar from smaller molecules by using ATP and the reducing power of electrons carried by NADPH Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

69 Carbon enters the cycle as CO 2 and leaves as a sugar named glyceraldehyde-3-phospate (G3P) For net synthesis of 1 G3P, the cycle must take place three times, fixing 3 molecules of CO 2 The Calvin cycle has three phases: Carbon fixation (catalyzed by rubisco) Reduction Regeneration of the CO 2 acceptor (RuBP) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

70 Fig Ribulose bisphosphate (RuBP) 3-Phosphoglycerate Short-lived intermediate Phase 1: Carbon fixation (Entering one at a time) Rubisco Input CO 2 P P P P P

71 Fig Ribulose bisphosphate (RuBP) 3-Phosphoglycerate Short-lived intermediate Phase 1: Carbon fixation (Entering one at a time) Rubisco Input CO 2 P P P P P ATP 6 6 ADP P P 6 1,3-Bisphosphoglycerate 6 P P NADP + NADPH i Phase 2: Reduction Glyceraldehyde-3-phosphate (G3P) 1 P Output G3P (a sugar) Glucose and other organic compounds Calvin Cycle

72 Fig Ribulose bisphosphate (RuBP) 3-Phosphoglycerate Short-lived intermediate Phase 1: Carbon fixation (Entering one at a time) Rubisco Input CO 2 P P P P P ATP 6 6 ADP P P 6 1,3-Bisphosphoglycerate 6 P P NADP + NADPH i Phase 2: Reduction Glyceraldehyde-3-phosphate (G3P) 1 P Output G3P (a sugar) Glucose and other organic compounds Calvin Cycle 3 3 ADP ATP 5 P Phase 3: Regeneration of the CO 2 acceptor (RuBP) G3P

73 Concept 10.4: Alternative mechanisms of carbon fixation have evolved in hot, arid climates Dehydration is a problem for plants, sometimes requiring trade-offs with other metabolic processes, especially photosynthesis On hot, dry days, plants close stomata, which conserves H 2 O but also limits photosynthesis The closing of stomata reduces access to CO 2 and causes O 2 to build up These conditions favor a seemingly wasteful process called photorespiration Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

74 Photorespiration: An Evolutionary Relic? In most plants (C 3 plants), initial fixation of CO 2, via rubisco, forms a three-carbon compound In photorespiration, rubisco adds O 2 instead of CO 2 in the Calvin cycle Photorespiration consumes O 2 and organic fuel and releases CO 2 without producing ATP or sugar Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

75 Photorespiration may be an evolutionary relic because rubisco first evolved at a time when the atmosphere had far less O 2 and more CO 2 Photorespiration limits damaging products of light reactions that build up in the absence of the Calvin cycle In many plants, photorespiration is a problem because on a hot, dry day it can drain as much as 50% of the carbon fixed by the Calvin cycle Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

76 C 4 Plants C 4 plants minimize the cost of photorespiration by incorporating CO 2 into four-carbon compounds in mesophyll cells This step requires the enzyme PEP carboxylase PEP carboxylase has a higher affinity for CO 2 than rubisco does; it can fix CO 2 even when CO 2 concentrations are low These four-carbon compounds are exported to bundle-sheath cells, where they release CO 2 that is then used in the Calvin cycle Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

77 Fig C 4 leaf anatomy Mesophyll cell Photosynthetic cells of C 4 plant leaf Bundle- sheath cell Vein (vascular tissue) Stoma The C 4 pathway Mesophyll cell CO 2 PEP carboxylase Oxaloacetate (4C) Malate (4C) PEP (3C) ADP ATP Pyruvate (3C) CO 2 Bundle- sheath cell Calvin Cycle Sugar Vascular tissue

78 Fig a Stoma C 4 leaf anatomy Photosynthetic cells of C 4 plant leaf Vein (vascular tissue) Bundle- sheath cell Mesophyll cell

79 Fig b Sugar CO 2 Bundle- sheath cell ATP ADP Oxaloacetate (4C) PEP (3C) PEP carboxylase Malate (4C) Mesophyll cell CO 2 Calvin Cycle Pyruvate (3C) Vascular tissue The C 4 pathway

80 CAM Plants Some plants, including succulents, use crassulacean acid metabolism (CAM) to fix carbon CAM plants open their stomata at night, incorporating CO 2 into organic acids Stomata close during the day, and CO 2 is released from organic acids and used in the Calvin cycle Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

81 Fig CO 2 Sugarcane Mesophyll cell CO 2 C4C4 Bundle- sheath cell Organic acids release CO 2 to Calvin cycle CO 2 incorporated into four-carbon organic acids (carbon fixation) Pineapple Night Day CAM Sugar Calvin Cycle Calvin Cycle Organic acid (a) Spatial separation of steps (b) Temporal separation of steps CO 2 1 2

82 The Importance of Photosynthesis: A Review The energy entering chloroplasts as sunlight gets stored as chemical energy in organic compounds Sugar made in the chloroplasts supplies chemical energy and carbon skeletons to synthesize the organic molecules of cells Plants store excess sugar as starch in structures such as roots, tubers, seeds, and fruits In addition to food production, photosynthesis produces the O 2 in our atmosphere Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

83 Fig Light Reactions: Photosystem II Electron transport chain Photosystem I Electron transport chain CO 2 NADP + ADP P i + RuBP 3-Phosphoglycerate Calvin Cycle G3P ATP NADPH Starch (storage) Sucrose (export) Chloroplast Light H2OH2O O2O2

84 Fig. 10-UN1 CO 2 NADP + reductase Photosystem II H2OH2O O2O2 ATP Pc Cytochrome complex Primary acceptor Primary acceptor Photosystem I NADP + + H + Fd NADPH Electron transport chain Electron transport chain O2O2 H2OH2O Pq

85 Fig. 10-UN2 Regeneration of CO 2 acceptor 1 G3P (3C) Reduction Carbon fixation 3 CO 2 Calvin Cycle 6 3C 5 3C 3 5C

86 Fig. 10-UN3 pH 7 pH 4 pH 8 ATP

87 Fig. 10-UN4

88 Fig. 10-UN5

89 You should now be able to: 1. Describe the structure of a chloroplast 2. Describe the relationship between an action spectrum and an absorption spectrum 3. Trace the movement of electrons in linear electron flow 4. Trace the movement of electrons in cyclic electron flow Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

90 5. Describe the similarities and differences between oxidative phosphorylation in mitochondria and photophosphorylation in chloroplasts 6. Describe the role of ATP and NADPH in the Calvin cycle 7. Describe the major consequences of photorespiration 8. Describe two important photosynthetic adaptations that minimize photorespiration Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings


Download ppt "Chapter 10 Photosynthesis. Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy."

Similar presentations


Ads by Google