Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Radio Sky Matt Jarvis (not Steve Rawlings!) University of Hertfordshire.

Similar presentations


Presentation on theme: "The Radio Sky Matt Jarvis (not Steve Rawlings!) University of Hertfordshire."— Presentation transcript:

1 The Radio Sky Matt Jarvis (not Steve Rawlings!) University of Hertfordshire

2 Semi-Empirical eXtragalactic S 3 -SEX Simulation Starting point: a z=0 (δρ/ρ) DM linear theory dark matter density field defined on a 550x550x1500 grid of 5 Mpc/h cells Cosmology: H 0 =70 km/s/Mpc, Ω M =0.3, Ω Λ =0.7, σ 8 =0.74, BAO P(k) Wilman et al. (2008) - MNRAS

3 In the ith cell, for each source population: Poisson sample the LF at L > L i In the limit (δρ/ρ)→0, (δn/n) → b(z)G(z)(δρ/ρ) (i.e. a linear bias model) Redshift ith cell, redshift z i ΔΩ Wilman et al. (2008) Semi-Empirical eXtragalactic S 3 -SEX Simulation

4 Continuum source populations Radio-quiet AGN: Hard X-ray AGN LF (Ueda et al. 2003) + X-ray:radio relation (Brinkmann et al. 2000) FRI radio sources: Willott et al. (2001) 151 MHz LF FRII radio sources: Willott et al. (2001) 151 MHz LF Normal star-forming galaxies: Yun et al. (2001) 1.4 GHz LF (low-L component) + PLE Starburst galaxies: Yun et al. (2001) 1.4 GHz LF (high-L component) + PLE Wilman et al. (2008)

5 FRI/II: unification, beaming, structures & spectra FRI FRII : Hotspot:extended flux ratio f HS = 0.4[logL 151 - 25.5] ± 0.15 Wilman et al. (2008)

6 L(60 μm) ‘normal’ galaxies starbursts Radio LF of IRAS-selected galaxies from Yun,Reddy & Condon (2001) Double Schechter-fn fit representing normal galaxies and starbursts We assume LF flattens below L 1.4 GHz = 10 20.7 W/Hz and integrate down to 10 18 W/Hz (SFR ~ 10 -3 M  /yr) Wilman et al. (2008) Two populations of star-forming galaxies

7 Clusters of galaxies Each 5 h -1 Mpc cell has mass 10 13 h -1 M  → resolution to identify cluster-mass haloes Smooth density field on a range of mass scales, 10 14-16 h -1 M , and search for islands of overdense cells with (δρ/ρ) > 1.66/G(z) Discreteness of grid and lack of filter-edge interpolation → ‘quantised’ cluster masses Redshift Wilman et al. (2008)

8 Large-scale structure and biasing Radio-quiet quasars: M halo = 3E12/h M  FRI radio sources: M halo = 1E13/h M  FRII radio sources: M halo = 1E14/h M  Normal star-forming galaxies: M halo = 1E11/h M  Starburst galaxies: M halo = 5E13/h M  Each population assigned a halo mass which reflects large-scale clustering which is then used to compute b(z) N.B. We are not directly populating galaxy-sized haloes Wilman et al. (2008)

9 S 3 -SEX Example Use

10 But what next?

11 From SKADS to Herschel, Spitzer and beyond? 3.5m primary Launched in May 2009 Continuum capabilities from 70-550 microns

12

13 3.5m primary Launched in April 2009 Continuum capabilities from 70-550 microns A few surveys directly relevant to SKA science

14 Herschel Multi-tiered Extragalactic Survey (HerMES, 900hours) PACS evolutionary probe (PEP, 650 hours) Herschel-ATLAS (600 hours) Great Observatories Origins Deep Survey: far infrared imaging with Herschel (363 hours) The Herschel Lensing Survey (292 hours)

15 HerMES+PEP (the usual deep fields) GOODS North / HDF North GOODS South CDFS ECDFS Lockman wide & deep Extended Groth Strip Bootes XMM/VVDS SWIRE fields (EN1, EN2, ES1) Spitzer-FLS AKARI SEP Courtesy of S. Oliver

16 Herschel-ATLAS Dunne, Eales, Jarvis++ Local(ish) Galaxies Planck synergies Efficient lens survey Rare object science Large-scale structure Clusters Galactic science Aim is to survey ~550sq.deg with Herschel at 110, 170, 250, 350 and 550mm. (600hrs allocated)

17 Herschel-ATLAS Dunne, Eales, Jarvis++ Local(ish) Galaxies Planck synergies Efficient lens survey Rare object science Large-scale structure Clusters Galactic science Aim is to survey ~550sq.deg with Herschel at 110, 170, 250, 350 and 550mm. (600hrs allocated) These will all be completed by 2012, so we can use them (and other wavelength surveys) to feed into the SKA sky simulations and give us a better picture of the SKA-sky

18 Herschel-ATLAS Dunne, Eales, Jarvis++ Local(ish) Galaxies Planck synergies Efficient lens survey Rare object science Large-scale structure Clusters Galactic science Aim is to survey ~550sq.deg with Herschel at 110, 170, 250, 350 and 550mm. (600hrs allocated) But for now we go from the SKADS radio simulation to predict what Spitzer and Herschel have and will see…

19 Baseline model Starbursts follow FIR-radio correlation of Yun, reddy, Condon AGN given distribution in torus emission according Poletta et al. and CLUMPY models of Nenkova et al. FIR emission assigned scaled with L(AGN) and according to Grimes et al. Wilman, Jarvis et al.

20 Baseline model Starbursts follow FIR-radio correlation of Yun, Reddy, Condon AGN given distribution in torus emission according Poletta et al. and CLUMPY models of Nenkova et al. FIR emission assigned scaled with L(AGN) and according to Grimes et al. Wilman, Jarvis et al.

21 Modification 1 Starbursts follow FIR-radio correlation of Yun, reddy, Condon Evolution was PLE in a E-dS Cosmology. Use new prescription of PLE in L- Cosmology for the 70um population (Huynh et al. 2007) Wilman, Jarvis et al.

22 Modification 1 Starbursts follow FIR-radio correlation of Yun, reddy, Condon Evolution was PLE in a E-dS Cosmology. Use new prescription of PLE in L- Cosmology for the 70um population (Huynh et al. 2007) Wilman, Jarvis et al.

23 Modification 2 New evidence suggests that higher- redshift sources have cooler SEDs (e.g. Symeonidis et al. 2009) (peak of the thermal dust emission moves to longer wavelengths) Results in a very slight modification in the FIR-radio relation Wilman, Jarvis et al.

24 Mid-infrared redshift distributions

25 Far-infrared redshift distributions

26 Predictions for Herschel Surveys

27 HerMES; Oliver et al. 2010 H-ATLAS; Clements, Rigby, et al. 2010

28 http://s-cubed.physics.ox.ac.uk/s3_sax Obreschkow et al. 2009 (ApJ 703)

29 http://s-cubed.physics.ox.ac.uk/s3_sax DeLucia2006a-simulation boxes with HI and H 2 properties Mock observing cone with HI and CO emission lines Obreschkow et al. 2009 (ApJ 698); Obreschkow et al. 2009 (ApJ 703) HerMES; Oliver et al. 2010

30 e-MERLIN + Goonhilly e-MERLIN plus Goonhilly needed to recover correct CO PA at z=4 (Heywood et al. 2011)

31 Summary We have a multi-frequency radio survey from the SKADS We have expanded this simulation to far- and mid-infrared wavelengths Our final simulation fits the current constraints very well from 24um through to 850um This will be tested with Herschel over the next few years Any departure from our predictions may have a direct impact on the radio frequency simulations, allowing us to refine the SKA simulation as time goes on We plan to further extend this simulation to the optical and near-IR over the next few months Use new surveys at these wavelengths to aid in producing the best large-area sky simulation for the SKA and other surveys in the SKA era. Johnston-Hollitt working on incorporating diffuse radio emission from clusters properly


Download ppt "The Radio Sky Matt Jarvis (not Steve Rawlings!) University of Hertfordshire."

Similar presentations


Ads by Google