Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Critical Mission Support Through Energy Security Susan Van Scoyoc Concurrent Technologies Corporation 16 August 2012 Energy Huntsville Meeting Huntsville,

Similar presentations


Presentation on theme: "1 Critical Mission Support Through Energy Security Susan Van Scoyoc Concurrent Technologies Corporation 16 August 2012 Energy Huntsville Meeting Huntsville,"— Presentation transcript:

1 1 Critical Mission Support Through Energy Security Susan Van Scoyoc Concurrent Technologies Corporation 16 August 2012 Energy Huntsville Meeting Huntsville, AL

2 22 BLUF on Energy Security DoD Installations are moving towards microgrids as an energy security solution… the Triple Bottom Line

3 33 What is the State of your Energy Security? Are the critical missions and corresponding critical facilities identified? Are all the mission critical equipment connected to the auxiliary generators? Are your auxiliary generators capable of long-term continuous operation? Can the generation be grid connected and operate in parallel? Do you have large prime power generators on site? Are they connected to the distribution system? Can the installation distribution system be operated independently from the commercial electric utility supply?

4 44 ESA Methodology for the Army – Three Phases Phase I Phase II Phase III

5 55 Summarized Results from Phase I Prioritized Critical Energy Needs Phase IESA #1 ESA #2 ESA #3 ESA #4 ESA #5 Number of Missions 122061316 Critical Tasks 13196 18 Facilities 506341131137 Facility Functions 64146123146172 SPFs 12883107120110  The decomposition of critical missions at each facility resulted in identifying SPFs, making site personnel aware of their energy dependencies to accomplish missions.

6 66 Summarized Results from Phase II Risk and Vulnerability Analysis Phase IIESA #1 ESA #2 ESA #3 ESA #4 ESA #5 Threats Analyzed 616 1523 Total Risks 456415645236983 Vulnerability 315213274 Concern 105024447 Observation 104381241210 Findings 216325596189652 Unconventional Concerns 29210912  Phase II mathematically analyzes and uncovers plausible threats and their consequential risks to the mission. The qualitative/quantitative prioritization can be used as mitigation justification.

7 77 Summarized Results from Phase III Potential Mitigation Solutions Phase IIIESA #1 ESA #2 ESA #3 ESA #4 ESA #5 Mitigation Solutions Identified 121405645236983  Through prioritization and mission owner input, the ESA identified weaknesses in the existing energy security posture and provided actionable solutions for leadership to implement. —Determined multiple solutions with varying complexity and ROI —Provided solutions in a format that can be easily migrated to a form or template for recommended funding channels —Provided a decision point for installation leadership

8 88 Mission Critical Utility Infrastructure Methodology Planning as a Mitigation Solution High Reliability Generation and Distribution System – Intelligent Distribution System (Smart Grid) – Self Sustaining Electric Infrastructure – Onsite Electric Generation – Demand Response Control Develop Standard Operating Procedure Determine Monitoring/ Control Strategy Establish Distribution Configuration Identify Generation Resource and Location Determine Energy Requirements Define Critical Facilities

9 99 Missions are constantly changing – Island concept can enable real-time changes to critical facilities supported based on mission cycles Allows flexibility to provide service for Non-Critical Facilities – Critical Missions not always dependant on energy – Some facilities could be supported before critical operations depending on event Identify the Critical Facilities that Everything Relies On – Helps to prioritize and look at emergency with a “utility restoration priority perspective Conceptual Design Results Conceptual Design EstimatesSite #1Site #2Site #3 Load (MW)12.810.410.3 Installed Generation 1 (MW)2722 2 30 3 Available Generation 1 (MW)1813.5 2 18 3 Critical Buildings (#)443930 Total ROM Cost ($M)52.950.253.6 - Distribution Upgrades ($M)1.71.53.0 - Engineering ($M)8.810.05.0 - Generation Equipment ($M)42.438.745.6 Recommended Storage (days)779 1 UFC mandates two backup generators (N+2) for prime power generating plants 2 Does not include existing 5 MW gas turbine 3 Does not include existing distributed generation

10 10 Lessons Learned Open source interoperability between components and systems for optimal operation and redundancy Specifications for systems must be developed and integrated for Resilient Energy System operation Periodic review of the system needed due to changing installation and mission priorities Auxiliary generators and/or circuit connectivity may be lacking for key mission critical support equipment Generation equipment largest contributor to project cost; decrease demand in critical facilities can lower generation requirements Automated control strategies decrease downtime and increase operational sta bility

11 11 Technology Gaps Standard communication structure for both monitoring and command/control of distributed resources being implemented outside of a utility infrastructure User-accessible, documented power interface design approach - how to choose components such as inductors/capacitors for solid application Multimode inverters that can operate grid connected and switch to grid independent – Bi-directional DC to DC – Bi-directional AC to DC and DC to AC Cyber security standards/protocols to mitigate threats Small scale nuclear plants for military installations


Download ppt "1 Critical Mission Support Through Energy Security Susan Van Scoyoc Concurrent Technologies Corporation 16 August 2012 Energy Huntsville Meeting Huntsville,"

Similar presentations


Ads by Google