Download presentation

1
**6.5 – Applying Systems of Linear Equations**

2
Ex x + 4y = -25 2x – 3y = 6

3
Ex x + 4y = -25 2x – 3y = 6 Eliminate “x” OR Eliminate “y”

4
Ex x + 4y = -25 2x – 3y = 6 Eliminate “x”

5
Ex x + 4y = -25 2x – 3y = 6 Eliminate “x”

6
Ex [3x + 4y = -25] -3[2x – 3y = 6] Eliminate “x”

7
Ex [3x + 4y = -25] -3[2x – 3y = 6] Eliminate “x” 6x + 8y = -50 -6x +9y = -18

8
Ex [3x + 4y = -25] -3[2x – 3y = 6] Eliminate “x” 6x + 8y = -50 -6x +9y = -18

9
Ex x + 4y = -25 2x – 3y = 6 Eliminate “x” 6x + 8y = -50 -6x +9y = -18 17y = -68

10
Ex x + 4y = -25 2x – 3y = 6 Eliminate “x” 6x + 8y = -50 -6x +9y = y = -68

11
Ex x + 4y = -25 2x – 3y = 6 Eliminate “x” 6x + 8y = -50 -6x +9y = y = -68 y = -4

12
Ex x + 4y = -25 2x – 3y = 6 Eliminate “x” 6x + 8y = -50 -6x +9y = -18 17y = -68 y = -4 3x + 4y = -25 3x + 4(-4) = -25 3x – 16 = -25 3x = -9 x = -3 (-3, -4)

13
Ex x + 4y = -25 2x – 3y = 6 Eliminate “x” OR Eliminate “y” 6x + 8y = -50 -6x +9y = -18 17y = -68 y = -4 3x + 4y = -25 3x + 4(-4) = -25 3x – 16 = -25 3x = -9 x = -3 (-3, -4)

14
Ex x + 4y = -25 2x – 3y = 6 Eliminate “x” OR Eliminate “y” 6x + 8y = -50 -6x +9y = -18 17y = -68 y = -4 3x + 4y = -25 3x + 4(-4) = -25 3x – 16 = -25 3x = -9 x = -3 (-3, -4)

15
Ex [3x + 4y = -25] 4[2x – 3y = 6] Eliminate “x” OR Eliminate “y” 6x + 8y = -50 -6x +9y = -18 17y = -68 y = -4 3x + 4y = -25 3x + 4(-4) = -25 3x – 16 = -25 3x = -9 x = -3 (-3, -4)

16
Ex [3x + 4y = -25] 4[2x – 3y = 6] Eliminate “x” OR Eliminate “y” 6x + 8y = x + 12y = -75 -6x +9y = x – 12y = 24 17y = -68 y = -4 3x + 4y = -25 3x + 4(-4) = -25 3x – 16 = -25 3x = -9 x = -3 (-3, -4)

17
Ex x + 4y = -25 2x – 3y = 6 Eliminate “x” OR Eliminate “y” 6x + 8y = x + 12y = -75 -6x +9y = x – 12y = 24 17y = x = -51 y = -4 3x + 4y = -25 3x + 4(-4) = -25 3x – 16 = -25 3x = -9 x = -3 (-3, -4)

18
Ex x + 4y = -25 2x – 3y = 6 Eliminate “x” OR Eliminate “y” 6x + 8y = x + 12y = -75 -6x +9y = x – 12y = 24 17y = x = -51 y = -4 3x + 4y = -25 3x + 4(-4) = -25 3x – 16 = -25 3x = -9 x = -3 (-3, -4)

19
Ex x + 4y = -25 2x – 3y = 6 Eliminate “x” OR Eliminate “y” 6x + 8y = x + 12y = -75 -6x +9y = x – 12y = 24 17y = x = -51 y = x = -3 3x + 4y = -25 3x + 4(-4) = -25 3x – 16 = -25 3x = -9 x = -3 (-3, -4)

20
Ex x + 4y = -25 2x – 3y = 6 Eliminate “x” OR Eliminate “y” 6x + 8y = x + 12y = -75 -6x +9y = x – 12y = 24 17y = x = -51 y = x = -3 3x + 4y = x + 4y = -25 3x + 4(-4) = (-3) + 4y = -25 3x – 16 = y = -25 3x = y = -16 x = y = -4 (-3, -4)

21
**Ex. 2 Determine the best method to solve the system of equations**

Ex. 2 Determine the best method to solve the system of equations. Then solve the system. 4x – 3y = 12 x + 2y = 14

22
**Ex. 2 Determine the best method to solve the system of equations**

Ex. 2 Determine the best method to solve the system of equations. Then solve the system. 4x – 3y = 12 -4[ x + 2y = 14]

23
**Ex. 2 Determine the best method to solve the system of equations**

Ex. 2 Determine the best method to solve the system of equations. Then solve the system. 4x – 3y = 12 -4[ x + 2y = 14] 4x – 3y = 12

24
**Ex. 2 Determine the best method to solve the system of equations**

Ex. 2 Determine the best method to solve the system of equations. Then solve the system. 4x – 3y = 12 -4[ x + 2y = 14] 4x – 3y = 12 -4x – 8y = -56

25
**Ex. 2 Determine the best method to solve the system of equations**

Ex. 2 Determine the best method to solve the system of equations. Then solve the system. 4x – 3y = 12 -4[ x + 2y = 14] 4x – 3y = x – 3(4) = 12 -4x – 8y = x – 12 = 12 -11y = x = 24 y = x = 6 (6,4)

26
Ex.3 3x – 7y = -14 5x + 2y = 45

27
Ex x – 7y = -14 5x + 2y = 45 2[3x – 7y = -14] [3x – 7y = -14] 7[5x + 2y = 45] -3[5x + 2y = 45] 6x – 14y = x – 35y = -70 35x + 14y = x – 6y = -135 41x = y = -205 x = y = 5 3x – 7y = x – 7y = -14 3(7) – 7y = x – 7(5) = -14 21 – 7y = x – 35 = -14 -7y = x = 21 y = (7,5) x = 7

Similar presentations

© 2024 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google