Download presentation

1
**Section 5.3 – The Definite Integral**

As the number of rectangles increased, the approximation of the area under the curve approaches a value. Copyright 2010 Pearson Education, Inc.

2
**Section 5.3 – The Definite Integral**

Definition Note: The function f(x) must be continuous on the interval [a, b].

3
**Section 5.3 – The Definite Integral**

Parts of the Definite Integral Copyright 2010 Pearson Education, Inc.

4
**Section 5.3 – The Definite Integral**

Properties of the Definite Integral Copyright 2010 Pearson Education, Inc.

5
**Section 5.3 – The Definite Integral**

Geometric Interpretations of the Properties of the Definite Integral Copyright 2010 Pearson Education, Inc.

6
**Section 5.3 – The Definite Integral**

Using the Properties of the Definite Integral 1 3 𝑓 𝑥 𝑑𝑥 = 𝑓 𝑥 𝑑𝑥 = 𝑔 𝑥 𝑑𝑥 =−4 Given: 1 3 3𝑓 𝑥 𝑑𝑥 = 3 1 3 𝑓 𝑥 𝑑𝑥 = 3 6 =18 1 3 2𝑓 𝑥 −4𝑔 𝑥 𝑑𝑥 = 2 1 3 𝑓 𝑥 𝑑𝑥 −4 1 3 𝑔 𝑥 𝑑𝑥 = 2 6 −4 −4 =28 1 7 𝑓 𝑥 𝑑𝑥 = 1 3 𝑓 𝑥 𝑑𝑥 𝑓 𝑥 𝑑𝑥 = 6+9=15 3 1 𝑓 𝑥 𝑑𝑥 = − 1 3 𝑓 𝑥 𝑑𝑥 = −6

7
**Section 5.3 – The Definite Integral**

Rules of the Definite Integral 𝑎 𝑏 𝑐 𝑑𝑥=𝑐(𝑏−𝑎) 𝑎 𝑏 𝑥 𝑑𝑥= 𝑏 2 2 − 𝑎 2 2 𝑎 𝑏 𝑥 2 𝑑𝑥= 𝑏 3 3 − 𝑎 3 3 Examples 2 6 4 𝑑𝑥= 4 8 𝑥 𝑑𝑥= − = 4 6−2 = 16 32−8= 24 3 5 𝑥 2 𝑑𝑥 = − = 125 3 − 27 3 = 98 3 =32.67 3 4 𝑥 2 +3𝑥−2 𝑑𝑥 = 3 4 𝑥 2 𝑑𝑥 𝑥 𝑑𝑥 − 𝑑𝑥 = − − − 2 4−3 = − 9 2 − 64 3 − 2 1 = 20.83

8
**Section 5.4 – The Fundamental Theorem of Calculus**

𝐼𝑓 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑒𝑣𝑒𝑟𝑦 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑎, 𝑏 𝑎𝑛𝑑 𝐹 𝑖𝑠 𝑎𝑛𝑦 𝑎𝑛𝑡𝑖𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑓 𝑜𝑛 𝑎, 𝑏 , 𝑡ℎ𝑒𝑛 𝑎 𝑏 𝑓 𝑥 𝑑𝑥=𝐹 𝑏 −𝐹(𝑎) . Examples 1 5 5𝑥 𝑑𝑥 = 5 𝑥 = 5 1 5(5) 2 2 − = 125 2 − 5 2 = 120 2 =60 𝜋 6 2𝜋 3 𝑠𝑖𝑛𝑥 𝑑𝑥 = 5 1 −𝑐𝑜𝑠 2𝜋 3 − −𝑐𝑜𝑠 𝜋 6 = − − 1 2 − − = −𝑐𝑜𝑠𝑥 = 0.866

9
**Section 5.4 – The Fundamental Theorem of Calculus**

𝑎 𝑏 𝑓 𝑥 𝑑𝑥=𝐹 𝑏 −𝐹(𝑎) . Examples 3 4 𝑥 2 +3𝑥−2 𝑑𝑥 = 𝑥 𝑥 2 2 −2𝑥 = 4 3 (4) 2 2 −2(4) − (3) 2 2 −2(3) 37.33−16.5= 20.83 𝑥 −1 5 − = 32 1 𝑥 𝑑𝑥 = 32 1 32 𝑥 −6 5 𝑑𝑥 = −5 𝑥 = − 5 2 − − 5 1 = 2.5 1

10
**Section 5.4 – The Fundamental Theorem of Calculus**

Differentiating a Definite Integral 𝐼𝑓 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑜𝑛 𝑎, 𝑏 𝑎𝑛𝑑 𝑥 𝑖𝑠 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡 𝑜𝑛 𝑎, 𝑏 , 𝑡ℎ𝑒𝑛 𝐹 ′ 𝑥 = 𝑑 𝑑𝑥 𝑎 𝑥 𝑓 𝑡 𝑑𝑡=𝑓(𝑥) 𝑑 𝑑𝑥 1 𝑥 𝑡 2 𝑑𝑡= 𝑑 𝑑𝑥 𝑡 = 𝑥 1 𝑑 𝑑𝑥 𝑥 3 3 − = 𝑑 𝑑𝑥 𝑥 3 3 − 1 3 = 𝑥 2 𝑑 𝑑𝑥 1 4𝑥 𝑡 2 𝑑𝑡= 𝑑 𝑑𝑥 𝑡 = 4𝑥 1 𝑑 𝑑𝑥 (4𝑥) 3 3 − = 𝑑 𝑑𝑥 64𝑥 3 3 − 1 3 = 64𝑥 2 𝑑 𝑑𝑥 1 𝑥 2 𝑡 2 𝑑𝑡= 𝑑 𝑑𝑥 𝑡 = 𝑥 2 1 𝑑 𝑑𝑥 ( 𝑥 2 ) 3 3 − = 𝑑 𝑑𝑥 𝑥 6 3 − 1 3 = 6 𝑥 5 3 = 2𝑥 5

11
**Section 5.4 – The Fundamental Theorem of Calculus**

Differentiating a Definite Integral 𝐼𝑓 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑜𝑛 𝑎, 𝑏 𝑎𝑛𝑑 𝑥 𝑖𝑠 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡 𝑜𝑛 𝑎, 𝑏 , 𝑡ℎ𝑒𝑛 𝐹 ′ 𝑥 = 𝑑 𝑑𝑥 𝑎 𝑥 𝑓 𝑡 𝑑𝑡=𝑓(𝑥) 𝑑 𝑑𝑥 1 𝑥 𝑡 2 𝑑𝑡= 𝑑 𝑑𝑥 1 𝑥 2 sin 𝑡 𝑑𝑡= 𝑥 = 𝑥 2 2𝑥 𝑠𝑖𝑛 𝑥 2 𝑑 𝑑𝑥 1 4𝑥 𝑡 2 𝑑𝑡= 𝑑 𝑑𝑥 1 𝑥 2 +𝑥 tan 𝑡 𝑑𝑡= 4𝑥 = 64𝑥 2 2𝑥+1 𝑡𝑎𝑛 𝑥 2 +2 𝑑 𝑑𝑥 1 𝑥 2 𝑡 2 𝑑𝑡= 𝑑 𝑑𝑥 𝑡𝑎𝑛𝑥 𝑠𝑖𝑛𝑥 𝑡 2 𝑑𝑡= 𝑥 𝑥 = 2𝑥 5 (𝑠𝑖𝑛 2 𝑥) 𝑐𝑜𝑠𝑥 −(𝑡𝑎𝑛 2 𝑥) 𝑠𝑒𝑐 2 𝑥

12
**Section 5.4 – The Fundamental Theorem of Calculus**

Mean Value Theorem for Integrals Copyright 2010 Pearson Education, Inc.

13
**Section 5.3 – The Definite Integral**

Mean Value for Definite Integral Find the mean (average) value of the function 𝑓 𝑥 = 𝑥 2 +2 over the interval 1, 3 𝐴𝑉= 1 3− 𝑥 𝑑𝑥 3 𝐴𝑉= 𝑥 𝑥 1 𝐴𝑉= − 𝐴𝑉= − 7 3 𝐴𝑉= 19 3 =6.33

14
**Section 5.3 – The Definite Integral**

Difference between the Value of a Definite Integral and Total Area Find the mean (average) value of the function 𝑓 𝑥 =𝑠𝑖𝑛𝑥 over the interval 0, 2𝜋 Total Area 0 2𝜋 𝑠𝑖𝑛𝑥 𝑑𝑥 = 0 𝜋 𝑠𝑖𝑛𝑥 𝑑𝑥 − 𝜋 2𝜋 𝑠𝑖𝑛𝑥 𝑑𝑥 = 𝜋 2𝜋 𝜋 Value of the Definite Integral −𝑐𝑜𝑠𝑥 − −𝑐𝑜𝑠𝑥 0 2𝜋 𝑠𝑖𝑛𝑥 𝑑𝑥 = 2𝜋 −𝑐𝑜𝑠𝑥 = −𝑐𝑜𝑠 𝜋 − −𝑐𝑜𝑠 0 − −𝑐𝑜𝑠 2𝜋 − −𝑐𝑜𝑠 𝜋 −𝑐𝑜𝑠 2𝜋 − −𝑐𝑜𝑠 0 = − −1 − −1 − − 1 − 1 = 4 − 1 − −1 = Copyright 2010 Pearson Education, Inc.

Similar presentations

© 2021 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google