Download presentation

Presentation is loading. Please wait.

Published byChristian Wright Modified over 3 years ago

1
The Mean Value Theorem and Rolles Theorem Lesson 3.2 I wonder how mean this theorem really is?

2
3.2 Bellwork Locate the COORDINATES of the absolute extrema of the function on the closed interval given. Verify the absolute extrema you found by graphing the function in an appropriate viewing window. Find the equation of the tangent line to the curve when x = 2. Graph the curve and the tangent line in an appropriate viewing window on your calculator.

5
Finding the equation of the tangent line.

6
The absolute maximum and absolute minimum are clearly shown in this viewing window. You can also see that each critical point represents a local extrema for the graph. (0,0) is the location of a relative maximum, also known as a local maximum of f(x). (1,-1/2) is the location of a relative minimum, also known as a local minimum of f(x).

7
Notice that the slope of the tangent line clearly matches the slope of the curve at the point (2,2).

8
The Mean Value Theorem and Rolles Theorem Lesson 3.2 I wonder how mean this theorem really is?

9
This is Really Mean

10
Think About It Consider a trip of two hours that is 120 miles in distance … You have averaged 60 miles per hour What reading on your speedometer would you have expected to see at least once? 60

11
Rolles Theorem Given f(x) on closed interval [a, b] Differentiable on open interval (a, b) If f(a) = f(b) … then There exists at least one number a < c < b such that f (c) = 0 f(a) = f(b) a b c

12
Mean Value Theorem We can tilt the picture of Rolles Theorem Stipulating that f(a) f(b) Then there exists a c such that a b c

13
Mean Value Theorem Applied to a cubic equation Note Geogebera Example Note Geogebera Example

14
Finding c Given a function f(x) = 2x 3 – x 2 Find all points on the interval [0, 2] where Strategy Find slope of line from f(0) to f(2) Find f (x) Set equal to slope … solve for x

15
Modeling Problem Two police cars are located at fixed points 6 miles apart on a long straight road. The speed limit is 55 mph A car passes the first point at 53 mph Five minutes later he passes the second at 48 mph Yuk! I think he was speeding, Enos We need to prove it, Rosco

Similar presentations

Presentation is loading. Please wait....

OK

THE DERIVATIVE AND THE TANGENT LINE PROBLEM

THE DERIVATIVE AND THE TANGENT LINE PROBLEM

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on ip address classes and special ip Ppt on data handling for class 7th results Ppt on event handling in javascript for loop Ppt on solar energy class 10 Ppt on network theory tutorials Ppt on physical layer of osi model Jit ppt on manufacturing Ppt on means of transport for class 1 Ppt on scientists and their inventions Water cycle for kids ppt on batteries