Download presentation

Presentation is loading. Please wait.

1
**Graphs of Trigonometric Functions**

Digital Lesson Graphs of Trigonometric Functions

2
**Properties of Sine and Cosine Functions**

The graphs of y = sin x and y = cos x have similar properties: 1. The domain is the set of real numbers. 2. The range is the set of y values such that 3. The maximum value is 1 and the minimum value is –1. 4. The graph is a smooth curve. 5. Each function cycles through all the values of the range over an x-interval of 6. The cycle repeats itself indefinitely in both directions of the x-axis. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Properties of Sine and Cosine Functions

3
**Graph of the Sine Function**

To sketch the graph of y = sin x first locate the key points. These are the maximum points, the minimum points, and the intercepts. -1 1 sin x x Then, connect the points on the graph with a smooth curve that extends in both directions beyond the five points. A single cycle is called a period. y x y = sin x Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Sine Function

4
**Graph of the Cosine Function**

To sketch the graph of y = cos x first locate the key points. These are the maximum points, the minimum points, and the intercepts. 1 -1 cos x x Then, connect the points on the graph with a smooth curve that extends in both directions beyond the five points. A single cycle is called a period. y x y = cos x Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Cosine Function

5
**Example: Sketch the graph of y = 3 cos x on the interval [–, 4].**

Partition the interval [0, 2] into four equal parts. Find the five key points; graph one cycle; then repeat the cycle over the interval. max x-int min 3 -3 y = 3 cos x 2 x y x (0, 3) ( , 3) ( , 0) ( , 0) ( , –3) Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Example: y = 3 cos x

6
**If |a| > 1, the amplitude stretches the graph vertically. **

The amplitude of y = a sin x (or y = a cos x) is half the distance between the maximum and minimum values of the function. amplitude = |a| If |a| > 1, the amplitude stretches the graph vertically. If 0 < |a| > 1, the amplitude shrinks the graph vertically. If a < 0, the graph is reflected in the x-axis. y x y = 2sin x y = sin x y = sin x y = – 4 sin x reflection of y = 4 sin x y = 4 sin x Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Amplitude

7
**If b > 1, the graph of the function is shrunk horizontally.**

The period of a function is the x interval needed for the function to complete one cycle. For b 0, the period of y = a sin bx is For b 0, the period of y = a cos bx is also If 0 < b < 1, the graph of the function is stretched horizontally. y x period: period: 2 If b > 1, the graph of the function is shrunk horizontally. y x period: 4 period: 2 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Period of a Function

8
**Use basic trigonometric identities to graph y = f (–x) **

Example 1: Sketch the graph of y = sin (–x). The graph of y = sin (–x) is the graph of y = sin x reflected in the x-axis. y x y = sin (–x) Use the identity sin (–x) = – sin x y = sin x Example 2: Sketch the graph of y = cos (–x). The graph of y = cos (–x) is identical to the graph of y = cos x. y x Use the identity cos (–x) = – cos x y = cos (–x) y = cos (–x) Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Graph y = f(-x)

9
**Use the identity sin (– x) = – sin x:**

Example: Sketch the graph of y = 2 sin (–3x). Rewrite the function in the form y = a sin bx with b > 0 Use the identity sin (– x) = – sin x: y = 2 sin (–3x) = –2 sin 3x period: 2 3 = amplitude: |a| = |–2| = 2 Calculate the five key points. 2 –2 y = –2 sin 3x x y x ( , 2) (0, 0) ( , 0) ( , 0) ( , -2) Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Example: y = 2 sin(-3x)

10
**The Graph of y = Asin(Bx - C)**

The graph of y = A sin (Bx – C) is obtained by horizontally shifting the graph of y = A sin Bx so that the starting point of the cycle is shifted from x = 0 to x = C/B. The number C/B is called the phase shift. amplitude = | A| period = 2 /B. y y = A sin Bx Amplitude: | A| x Starting point: x = C/B Period: 2/B Copyright © by Houghton Mifflin Company, Inc. All rights reserved.

11
Example Determine the amplitude, period, and phase shift of y = 2sin(3x-) Solution: Amplitude = |A| = 2 period = 2/B = 2/3 phase shift = C/B = /3 Copyright © by Houghton Mifflin Company, Inc. All rights reserved.

12
**Example cont. y = 2sin(3x- )**

Copyright © by Houghton Mifflin Company, Inc. All rights reserved.

13
**Amplitude Period: 2π/b Phase Shift: c/b Vertical Shift**

Copyright © by Houghton Mifflin Company, Inc. All rights reserved.

Similar presentations

OK

Unit 7: Trigonometric Functions Graphing the Trigonometric Function.

Unit 7: Trigonometric Functions Graphing the Trigonometric Function.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on hydrogen fuel cell Ppt on regular expression in java Ppt on online marketing concept Hrm ppt on recruitment strategies Export pdf to ppt online free Free ppt on parts of a flower Ppt on idiopathic thrombocytopenic purpura Ppt on world peace day Ppt on hard copy devices Ppt on bluetooth broadcasting