Download presentation

Presentation is loading. Please wait.

Published byTimothy Orr Modified over 4 years ago

1
problems on tangents, velocity, derivatives, and differentiation

2
Mika Seppälä: Problems on Tangents, Velocity, Derivatives, and Differentiation overview of problems A rock is thrown upward with a velocity of 10m/s, its height in meters t seconds later is given by. 1

3
Mika Seppälä: Problems on Tangents, Velocity, Derivatives, and Differentiation overview of problems 1-a 1-b Estimate the instantaneous velocity when. Find the average velocity over the given time intervals. (i) (ii) (iii)

4
Mika Seppälä: Problems on Tangents, Velocity, Derivatives, and Differentiation overview of problems The table shows the position of a cyclist. t(seconds)012345 s(meters)01.45.110.717.725.8 2 2-a 2-b Estimate the instantaneous velocity when. Find the average velocity for each time period. (i) (ii) (iii)

5
Mika Seppälä: Problems on Tangents, Velocity, Derivatives, and Differentiation overview of problems 3 The graph of a function and that of its derivative is given. Which is which?

6
Mika Seppälä: Problems on Tangents, Velocity, Derivatives, and Differentiation overview of problems Find the derivative of the functions below using the definition of the derivative. 4 4-a 4-c 4-e 4-b 4-d

7
Mika Seppälä: Problems on Tangents, Velocity, Derivatives, and Differentiation overview of problems State, with reasons, the numbers at which f is not differentiable. 5

8
Mika Seppälä: Problems on Tangents, Velocity, Derivatives, and Differentiation overview of problems Find the equation of the line tangent to the graph of the function at the point. Find all points on the graph of the function at which the tangent line is horizontal. 6 7

9
Mika Seppälä: Problems on Tangents, Velocity, Derivatives, and Differentiation overview of problems 8 8-a 8-b Do the following functions have derivative at ? 8-c

10
Mika Seppälä: Problems on Tangents, Velocity, Derivatives, and Differentiation overview of problems 9 10 Assume that f has derivative everywhere. Set. Using the definition of derivative, show that g has a derivative and that. Show that the function is differentiable everywhere.

11
Mika Seppälä: Problems on Tangents, Velocity, Derivatives, and Differentiation overview of problems 11 Show that f is differentiable at.

Similar presentations

Presentation is loading. Please wait....

OK

3.1 –Tangents and the Derivative at a Point

3.1 –Tangents and the Derivative at a Point

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on series and parallel circuits examples Ppt on sports day dallas Ppt on indian cricket history Ppt on periscope tv Ppt on oxidation and reduction for class 10 Ppt on model view controller Ppt on carbon and its compounds model Ppt on articles of association and memorandum Ppt on monetary policy Ppt on aircraft landing gear systems