Download presentation

Presentation is loading. Please wait.

Published byOlivia Miles Modified over 4 years ago

1
ECMWF Training Course 2008 slide 1 Influence matrix diagnostic to monitor the assimilation system Carla Cardinali

2
ECMWF Training Course 2008 slide 2 Monitoring Assimilation System ECMWF 4D-Var system handles a large variety of space and surface- based observations. It combines observations and atmospheric state a priori information by using a linearized and non-linear forecast model Effective monitoring of a such complex system with 10 7 degree of freedom and 10 6 observations is a necessity. No just few indicators but a more complex set of measures to answer questions like How much influent are the observations in the analysis? How much influence is given to the a priori information? How much does the estimate depend on one single influential obs?

3
ECMWF Training Course 2008 slide 3 Influence Matrix: Introduction Unusual or influential data points are not necessarily bad observations but they may contain some of most interesting sample information In Ordinary Least-Square the information is quantitatively available in the Influence Matrix Tuckey 63, Hoaglin and Welsch 78, Velleman and Welsch 81 Diagnostic methods are available for monitoring multiple regression analysis to provide protection against distortion by anomalous data

4
ECMWF Training Course 2008 slide 4 Influence Matrix in OLS The OLS regression model is Y (mx1) observation vector X (mxq) predictors matrix, full rank q β (qx1) unknown parameters (mx1) error The fitted response is OLS provide the solution

5
ECMWF Training Course 2008 slide 5 Influence Matrix Properties S (mxm) symmetric, idempotent and positive definite matrix It is seen The diagonal element satisfy Cross-SensitivitySelf-Sensitivity Average Self-Sensitivity=q/m

6
ECMWF Training Course 2008 slide 6 Outline Conclusion Observation and background Influence Generalized Least Square method Findings related to data influence and information content Toy model: 2 observations

7
ECMWF Training Course 2008 slide 7 Hx b y HK I-HK Hx b y HK I-HK Solution in the Observation Space The analysis projected at the observation location The estimation ŷ is a weighted mean Hx b y HKI-HK B(q x q)=Var(x b ) R(p x p)=Var(y) K(q x p) gain matrix H(p x q) Jacobian matrix

8
ECMWF Training Course 2008 slide 8 Influence Matrix Observation Influence is complementary to Background Influence

9
ECMWF Training Course 2008 slide 9 Influence Matrix Properties The diagonal element satisfy

10
ECMWF Training Course 2008 slide 10 Synop Surface Pressure Influence

11
ECMWF Training Course 2008 slide 11 Airep 250 hPa U-Comp Influence

12
ECMWF Training Course 2008 slide 12 QuikSCAT U-Comp Influence

13
ECMWF Training Course 2008 slide 13 Global and Partial Influence

14
ECMWF Training Course 2008 slide 14 AMSU-A channel 13 Influence

15
ECMWF Training Course 2008 slide 15 Global and Partial Influence Global Influence = GI = 100% only Obs Influence 0% only Model Influence Partial Influence = PI = Type Variable Area Level

16
ECMWF Training Course 2008 slide 16 Global and Partial Influence Level 1 1000-850 2 850-700 3 700-500 4 500-400 5 400-300 6 300-200 7 200-100 8 100-70 9 70-50 10 50-30 11 30-0 Type SYNOP AIREP SATOB DRIBU TEMP PILOT AMSUA HIRS SSMI GOES METEOSAT QuikSCAT Variable uvTqpsTbuvTqpsTb Area TropicsS.HemN.Hem EuropeUSN.Atl …

17
ECMWF Training Course 2008 slide 17 Toy Model: 2 Observations x1x1 x2x2 y2y2 y1y1 Find the expression for S as function of r and the expression of for α=0 and 1 given the assumptions:

18
ECMWF Training Course 2008 slide 18 Toy Model: 2 Observations S ii r 1 1 1/2 1/3 1/2 =0 =1 x1x1 x2x2 y2y2 y1y1

19
ECMWF Training Course 2008 slide 19 Toy Model: 2 Observations =0 =1 x1x1 x2x2 y2y2 y1y1

20
ECMWF Training Course 2008 slide 20 Average Influence and Information Content Global Observation Influence GI=15% Global Background Influence I-GI=85% 2003 ECMWF Operational

21
N.Hemisphere PI = 15% Tropics PI = 17.5% S.Hemisphere PI = 12% GI = 15.3% 2003 ECMWF Operational

22
ECMWF Training Course 2008 slide 22 2007 ECMWF Operational

23
ECMWF Training Course 2008 slide 23 DFS % first bar Global, second North Pole and third South Pole Global Information Content 20% North Pole 5.6% South Pole 1.1%

24
ECMWF Training Course 2008 slide 24 DFS % first bar North Pole and second South Pole Global Information Content 20% North Pole 5.6% South Pole 1.1% Tropics 5.5%

25
ECMWF Training Course 2008 slide 25 Conclusions The Influence Matrix is well-known in multi-variate linear regression. It is used to identify influential data. Influence patterns are not part of the estimates of the model but rather are part of the conditions under which the model is estimated Disproportionate influence can be due to: incorrect data (quality control) legitimately extreme observations occurrence to which extent the estimate depends on these data S ii =1 Data-sparse Single observation Model under-confident (1-S ii ) S ii =0 Data-dense Model over-confident tuning (1-S ii )

26
ECMWF Training Course 2008 slide 26 Conclusions Observational Influence pattern would provide information on different observation system New observation system Special observing field campaign Thinning is mainly performed to reduce the spatial correlation but also to reduce the analysis computational cost Knowledge of the observations influence helps in selecting appropriate data density Diagnose the impact of improved physics representation in the linearized forecast model in terms of observation influence

27
ECMWF Training Course 2008 slide 27 Background and Observation Tuning in ECMWF 4D-Var Observations Model

28
ECMWF Training Course 2008 slide 28 Influence Matrix Computation B A sample of N=50 random vectors from (0,1) Truncated eigenvector expansion with vectors obtained through the combined Lanczos/conjugate algorithm. M=40

29
ECMWF Training Course 2008 slide 29 Hessian Approximation B-A 500 random vector to represent B

30
ECMWF Training Course 2008 slide 30 Ill-Condition Problem A set of linear equation is said to be ill-conditioned if small variations in X=(HK I-HK) have large effect on the exact solution ŷ, e.g matrix close to singularity A Ill-conditioning has effects on the stability and solution accuracy. A measure of ill-conditioning is A different form of ill-conditioning can results from collinearity: XX T close to singularity Large difference between the background and observation error standard deviation and high dimension matrix

31
ECMWF Training Course 2008 slide 31 Flow Dependent b : MAM T +Q DRIBU ps Influence

Similar presentations

Presentation is loading. Please wait....

OK

Chapter 7 Sampling and Sampling Distributions

Chapter 7 Sampling and Sampling Distributions

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Animated ppt on reflection of light Ppt on review of related literature introduction Ppt on acid-base indicators Ppt on object-oriented programming language Ppt on rf based dual mode robot Ppt on viruses and anti viruses free downloads Ppt on wireless networking technology Ppt on emotional intelligence at workplace Design for ppt on deforestation Ppt on total internal reflection animation