Presentation is loading. Please wait.

Presentation is loading. Please wait.

D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 1 Nuclear Level Densities and Spin Distributions Dorel Bucurescu National Institute.

Similar presentations


Presentation on theme: "D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 1 Nuclear Level Densities and Spin Distributions Dorel Bucurescu National Institute."— Presentation transcript:

1 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 1 Nuclear Level Densities and Spin Distributions Dorel Bucurescu National Institute of Physics and Nuclear Engineering, Bucharest, Romania Till von Egidy Physik Department, Technische Universität München, Germany

2 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 2 Important ingredient in related areas of physics and technology: - all kinds of nuclear reaction rates; - low energy neutron capture; - astrophysics (thermonuclear rates for nucleosynthesis); - fission/fusion reactor design. - photon strength function Nuclear level densities increase exponentially and can be directly determined (measured) for a limited number of nuclei & excitation energy range: - by counting the observed excited states at low excitations. - by counting the number of neutron resonances observed in low-energy neutron capture; level density close to E x = B n; Level densities were investigated for 310 nuclei between F and Cf (complete level schemes from ENSDF; n-resonance density from RIPL-2). Nuclear Level densities

3 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 3 Formulae for Level Densities a, E 1 T, E 0

4 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 4 Nuclear Temperature at low excitation energy Thermodynamical definition of temperature T = dE / d log  (E) Integration with T = constant yields  (E) = e (E – Eo) / T / T  The agreement of this formula with experimental  (E) shows  that T = const. at low energy in spite of increasing energy.  This is similar to melting ice where temperature is constant during heating.  T ~ E/n ex ~ A -2/3 indicates that the nucleus is melting from the surface.

5 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 5 Experimental Cumulative Number of Levels N(E) Resonance density is included in the fit

6 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 6 Fitted parameters a and E 1 as function of the mass number A a ~ A

7 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 7 Fitted parameters T and E 0 as function of the mass number A T ~ A -2/3 ~ 1/surface, degrees of freedom ~ nuclear surface

8 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 8 Precise reproduction of LD parameters with simple formulas: We looked carefully for correlations between the empirical LD parameters and well known observables which contain shell structure, pairing or collectivity. Mass values from mass tables are important. - pairing energies: Pp, Pn, Pa (deuteron pairing) - shell correction: S(Z,N) = M exp – M liquid drop, M = mass S - 0.5 Pa for even-even nuclei S´ = S for odd-mass nuclei S + 0.5 Pa for odd-odd nuclei - derivative dS(Z,N)/dA (calc. as [S(Z+1,N+1)-S(Z-1,N-1)]/4) TvE & DB, PRC72(2005)044311; C73(2006)049901(E)

9 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 9 Definition of neutron, proton, deuteron pairing energies: [ G.Audi, A.H.Wapstra, C.Thibault, “The AME2003 atomic mass evaluation”, Nucl. Phys. A729(2003)337 ] P n (A,Z)=(-1) A-Z+1 [S n (A+1,Z)-2S n (A,Z)+S n (A-1,Z)]/4 P p (A,Z)=(-1) Z+1 [S p (A+1,Z+1)-2S p (A,Z)+S p (A-1,Z-1)]/4 P d (A,Z)=(-1) Z+1 [S d (A+2,Z+1)-2S d (A,Z)+S d (A-2,Z-1)]/4 (S n, S p, S d : neutron, proton, deuteron separation energies)‏ Deuteron pairing with next neighbors: Pa (A,Z) = ½ (-1) Z [S d (A+2,Z+1)-S d (A,Z)]= =½ (-1) Z [-M(A+2,Z+1) + 2 M(A,Z) – M(A-2,Z-1)] M(A,Z) = experimental mass or mass excess values

10 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 10 shell correction shell correction S(Z,N) = M exp – M liquid drop Macroscopic liquid drop mass formula (Weizsäcker): J.M. Pearson, Hyp. Inter. 132(2001)59 E nuc /A = a vol + a sf A -1/3 + (3e 2 /5r 0 )Z 2 A -4/3 + (a sym +a ss A -1/3 )J 2 J= (N-Z)/A; A = N+Z [ E nuc = -B.E. = (M nuc (N,Z) – NM n – ZM p )c 2 ] From fit to 1995 Audi-Wapstra masses: a vol = -15.65 MeV; a sf = 17.63 MeV; a sym = 27.72 MeV; a ss = -25.60 MeV; r 0 = 1.233 fm.

11 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 11 Proposed Formulae for Level Density Parameters BSFG a = A 0.90 ( 0.1848 + 0.00828 S´) [MeV -1 ] E 1 = -0.48 –0.5 Pa + 0.29 dS/dA for even-even E 1 = -0.57 –0.5 Pa + 0.70 dS/dA for even-odd E 1 = -0.57 +0.5 Pa - 0.70 dS/dA for odd-even E 1 = -0.24 +0.5 Pa + 0.29 dS/dA for odd-odd CT T = A -2/3 / ( 0.0571 + 0.00193 S´) [MeV] E 0 = -1.24 –0.5 Pa + 0.33 dS/dA for even-even E 0 = -1.33 –0.5 Pa + 0.90 dS/dA for even-odd E 0 = -1.33 +0.5 Pa - 0.90 dS/dA for odd-even E 0 = -1.22 +0.5 Pa + 0.33 dS/dA for odd-odd

12 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 12 a = A 0..90 (0.1848 + 0.00828 S’)‏ E 1 = p 1 - 0.5Pa + p 4 dS(Z,N)/dAE 1 = p 2 - 0.5Pa + p 4 dS(Z,N)/dA E 1 = p 3 + 0.5Pa + p 4 dS(Z,N)/dA TvE & DB, PRC72(2005)044311; C73(2006)049901(E)

13 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 13 T = A -2/3 /(0.0571 + 0.00193 S´)‏ E 0 = p 1 - 0.5Pa + p 2 dS(Z,N)/dAE 0 = p 3 – Pa + p 4 dS(Z,N)/dA E 0 = p 1 + 0.5Pa + p 2 dS(Z,N)/dA TvE & DB, PRC72(2005)044311; C73(2006)049901(E)

14 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 14 Experimental Correlations between T and a and between E 0 and E 1 a ~ T -1.294 ~ A (-2/3) (-1.294) = A 0.863 This is close to a ~ A 0.90 DB & TvE, PRC72(2005)067304

15 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 15 Spin Distribution and Spin Cut-off Parameter  2 f(J,  ) = exp( -J 2 /2  2 ) - exp ( - (J+1) 2 /2  2 )  2 is expected to depend on mass A, level density parameter a, temperature T, moment of inertia  deformation  and excitation energy E.  2 = g t; a =  2 g /6 ; t = (U/a) 1/2 ; = 0.146A 2/3 Gilbert, Cameron :  2 = 0.0888 a t A 2/3 Dilg, Vonach et al.:  2 = 0.0150 t A 5/3 Iljinov et al. :  2 = T  ħ 2 ; R = r 0 A 1/3 ;  = 2 / 5 M R 2 Rauscher, Thielemann, Kratz:  2 =  rigid  ħ 2 sqrt(U/a), U=E –  Huang Zhongfu et al.:  2 = 0.0073 A 5/3 ( 1+ (1+4aU) 1/2 )/2a Which formula is correct? Which dependence on A, a, T, , E? What is the influence of the shell structure? Rigid Moment of inertia  rigid ?

16 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 16 Experimental determination of  2 Fit to the experimental spin distributions in level schemes 310 nuclei from 18 F to 251 Cf Complete low energy level schemes, E < ~2-3 MeV (no dependence of  2 on E considered). exp ? 8116 levels and 1556 spin groups. n calc (J) /  J n k (J) = f(J,  ) /  J f(J,  in each nucleus k    k  J  n k (J) - n calc (J)  2  n k 2 ]  k  J  n k (J) - F k  f(J,  )  2  n k 2 ]  n k (J) = number of levels in spin J group of nucleus k F k =  J  n k (J) /  J f(J,  ),  n k = n k 0.25, chosen in order to obtain  2 ≈ 1 in fit

17 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 17 Fits of the spin distribution Even-even nuclei: Strong even-odd spin staggering, J = 0 strength This is largely independent of A. f ee (J,  ) = f(J,  ) (1 + x) + 0.227(14) for even spin, x = - 0.227(14) for odd spin, + 1.02(9) for J = 0. This correction factor was always applied to even-even nuclei.

18 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 18 {

19 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 19 Results of the fits for  2 General Ansatz :  2 = p 1 A p 2 X p 3 X = a, T,  Available information is too little to determine energy dependence: no E dependence. X = a, level density parameter: p 3 = - 0.25(12),  2 = 1.04 X = T, temperature of LD: p 3 = 0.36(14),  2 = 1.04 X =    quadr. deformation : p 3 = 0.14(5),  2 = 1.10 No  2 improvement by additional dependencies!   2 = 2.61(21) A 0.277(18),  2 = 1.04  Surprising weak dependence on A !

20 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 20

21 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 21 Fit of   in different mass groups without dependence on mass A   nuclei all even-even odd odd-odd 18 F – 60 Co 6.8(2) 6.8(3) 6.1(3) 7.3(4) 59 Ni – 100 Tc 7.8(3) 8.1(7) 6.9(4) 10.5(12) 100 Ru – 148 Pm 8.6(3) 8.1(5) 7.9(4) 13.3(20) 145 Sm – 198 Au 12.0(4) 11.5(5) 10.5(5) 16.7(14) 199 Hg – 251 Cf 12.1(6) 10.6(8) 13.6(10) 12.3(15) all 9.1(2) 8.9(3) 8.6(2) 10.5(5)

22 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008

23 23

24 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 24

25 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 25

26 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 26

27 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 27 CONCLUSIONS  New empirical parameters for the BSFG and CT models, from fit to low energy levels and neutron resonance density, for 310 nuclei (mass 18 to 251):  Simple formulas are proposed for the dependence of level density parameters on mass number A, deuteron pairing energy Pa and shell correction S(Z,N): a, T : from A, Pa, S ; (a ~ A 0.90, T ~ A -2/3 ) backshifts: from Pa, dS/dA  These formulas calculate level densities also for other nuclei only from ground state masses given in mass tables (Audi, Wapstra).  Spin cut-off parameter σ 2 was determined from 310 nuclei with 8116 levels below about 3 MeV.  σ 2 varies only with mass, ~A 0.3.  Fit is not improved by additional dependence on a, T or β.  Even-even nuclei have strong even-odd spin staggering and enhancement of spin J = 0.  Agreement with theory: Alhassid et al., P.R.L.99(2007)162504; Kaneko & Schiller, P.R. C75(2007)044304

28 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 28

29 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 29 ERRORS depend on: -Missing or wrongly assigned levels; -Slightly different distributions (e.g., var. with A, type of nucleus); -Artificial cutting of maximum energy; -Odd-even differences.

30 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 30 STATISTICS: 310 nuclei 8116 levels, 1556 spin groups; 42 nuclei with more than 40 levels (21 with more than 50). (~ 5 levels/spin group: therefore many groups have less than 5 levels). Problem: the errors assigned to the number of levels in spin groups. Example: 124 Te (60 levels up to 3.0 MeV): # of levels Error Spin N N 1/2 N 1/4 --------------------------------------------- 0 5 2.2 1.5 1 9 3.0 1.7 2 23 4.8 2.2 3 15 3.9 2.0 4 8 2.8 1.7 We assume completeness of the level schemes of 5 – 8 %, therefore 3 – 5 levels missing or too much. How to distribute this error on the spin group? The error N 1/4 is more realistic: increases only slowly with nr. of levels, therefore groups with many levels have more weight. Also, it provides χ 2 ≈ 1.0

31 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 How to determine the variation of σ 2 with energy? ► Count resonances: - but, for even-even targets, get only spin 1/2 states; with p-capture, 3/2. - for odd-A targets, one gets 2 spin values, i.e. one spin ratio. Is that meaningful? ► From isomeric ratios.

32 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008  Should re-run the level density fits with new spin distribution (N.B.: the set of levels will be somewhat different from the old one: less, or more levels, and sometimes different spin regions)  What to use for the spin distribution in the resonance region ?  Will new staggering formula for even-even nuclei modify the level density parameters of the even-even nuclei? ???

33 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 DISTRIBUTIONS shown are not “real” ones, but just the available ones added all together. Real distributions, only : - in individual nuclei, - for groups of nuclei with same spin window.

34 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008

35 35 Level densities: averages Average level density ρ(E): ρ(E) = dN/dE = 1/D(E)‏ Cumulative number N(E)‏ Average level spacing D Level spacing S i =E i+1 -E i D(E) determined by a fit to the individual level spacings S i Level spacing correlation: Chaotic properties determine fluctuations about the averages and the errors of the LD parameters.

36 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 36 Completeness of nuclear level schemes Concept in experimental nuclear spectroscopy: “All” levels in a given energy range and spin window are known. A confidence level has to be given by experimenter: e.g., “less than 5% missing levels”. We assume no parity dependence of the level densities. Experimental basis: (n,γ), ARC : non-selective, high precision; (n,n’γ), (n,pγ), (p,γ); (d,p), (d,t), ( 3 He,d), …, (d,pγ), … β-decay; (α,nγ), (HI,xnypzα γ), HI fragmentation reactions; * Comparison with theory: one to one correspondence; * Comparison with neighbour nuclei; * Much experience of the experimenter. Low-energy discrete levels: Firestone&Shirley, Table of isotopes (1996); ENSDF database. Neutron resonance density: RIPL-2 database; http://www-nds.iaea.org

37 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 37 233 Th: Example of a complete low-energy level scheme

38 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 38

39 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 39 BSFG with energy-dependent „a“ (Ignatyuk)‏ a(E,Z,N) = ã [1+ S´(Z,N) f(E - E 2 ) / (E – E 2 )] f(E – E 2 ) = 1 – e – γ (E - E 2 ) ; γ = 0.06 MeV -1 ã = 0.1847 A 0.90 E 2 = E 1 This formula reduces the shell effect very slowly: 10% at 10 MeV, 50% at 30 MeV.

40 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 40 ã= 0.1847 A 0.90 E 2 = p 1 - 0.5Pa + p 4 dS(Z,N)/dA P 2 - 0.5Pa + p 4 dS(Z,N)/dA P 3 + 0.5Pa + p 4 dS(Z,N)/dA

41 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 41 Comparison of calculated and experimental resonance densities

42 D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 42 Comparison with previous level density calculations A. S. Iljinov et al. and T. Rauscher et al. have the following differences: 1. Data Set: Iljinov: Low levels, resonance densities, reaction data. Rauscher: Only resonance densities. We: Low levels and resonance densities. 2. Backshift: Iljinov: Fixed  = c 12 A -1/2, c = 0, 1, 2 for o-o, odd, e-e. Rauscher: Fixed  ½  n  p  from mass tables. We: Independly fitted and calculated with deuteron pairing. 3. Formulas: Iljinov: Different formulas, also rotation and vibration. Rauscher: Ignatyuk‘s formulas We: CT, BSFG, Ignatyuk, different shell and pairing corr. 4. Fit Procedure: Iljinov: Calc. a for each data point, global fit of ã(A). Rauscher: Global fit of ã(A) to resonance densities. We: First individual fit of a,E 1, ã,E 2 and T,E 0, then f (A).


Download ppt "D.Bucurescu, T. von Egidy, Level density, spin distribution-Ohio, July 2008 1 Nuclear Level Densities and Spin Distributions Dorel Bucurescu National Institute."

Similar presentations


Ads by Google