Presentation is loading. Please wait.

Presentation is loading. Please wait.

ICTs to Reduce Energy Consumption & GHG Emissions Cairo, 2010-11-02 Richard Labelle Consultant, Sam Gouda, Creara.

Similar presentations


Presentation on theme: "ICTs to Reduce Energy Consumption & GHG Emissions Cairo, 2010-11-02 Richard Labelle Consultant, Sam Gouda, Creara."— Presentation transcript:

1 ICTs to Reduce Energy Consumption & GHG Emissions Cairo, 2010-11-02 Richard Labelle (rlab@sympatico.ca), Consultant, ITUrlab@sympatico.ca Sam Gouda, Creara International, Consultant, ITU (sgouda@crearaintl.com)sgouda@crearaintl.com

2 Outline role of ICTs in reducing energy consumption & limiting GHG emissions Opportunities for using ICTs for this in Egypt in the built environment: -Identify the role of ICT in EE & GHG reduction in Egypt (rapid assessment) -Study applicable & viable EE measures in buildings (analyze 2 buildings) -Assess role of ICTs for smart grid and DSM in Egypt OBJECTIVES

3 Most energy comes from fossil fuels: coal & oil -Pollution & GHG emissions -Subsidized in Egypt & in many non OECD countries -Subject to C tax? Investors are wary! Energy demand could outstrip fossil fuel production -We use ~ 3 CMO/yr in 2010 ~ 9 CMO by 2050 if BAU -If BAU (i.e. 2.6%/yr): E use in next 50 years = 3 x E use in past 150 yrs -If eco scenario (grow & green): E use in next 50 yrs = 2 x E use in all of 20 th Century Crane, H.D., E. M. Kinderman & R. Malhotra. 2010. A cubic mile of oil. Realities and options for averting the looming global energy crisis. Oxford University Press, New York, 297 pp. EARTH ! WE HAVE A PROBLEM

4 Rising CO2 levels: global tipping point -If > 2 % warming Possible irreversible change! -Melting of Greenland ice sheet -Large scale weather system shifts -Collapse of global current system -Release of natural GHG stores (CH4, etc.) Only technologies with sufficient capacity for lasting increases in E supply -Solar (thermal) & wind -Nuclear -Both will take several years to ramp up to meet present demand, let alone future demand (See Cubic mile of oil) EARTH ! WE HAVE A PROBLEM

5 Can we catch up with the increased demand? The Challenges Power Availability POWER AVALABILITY

6 How much blackouts are you personally willing to take? What effect lack of electric power will have on economic development? Example from experience in another country History lessons learnt from Egypt POWER AVALABILITY The Challenges Power Availability Technical Idea: Sam Gouda & Nader Tadros; Artistic Idea: Golo

7 Energy efficiency -Needed everywhere Energy conservation -For industrialized countries now -For developing countries via tech transfer / IDA Pricing carbon Cleantech R&D -USD 162 B in 2009 to USD 200 B in 2010 -A global Green Growth Marshall Plan -Agreement on plan & funding at COP16, COP17, etc. GLOBAL SOLUTIONS

8 Segar, C. 2009. International energy co-operation and global energy security. International Energy Agency (IEA). Session on Ensuring the sustainability of energy supply chain, Conference on Strengthening Energy Security in the OSCE area, Bratislava, 6 – 7 July 2009.. PowerPoint presentation. http://www.osce.org/documents/eea/2009/07/38666_en.pdfhttp://www.osce.org/documents/eea/2009/07/38666_en.pdf ENERGY EFFECIENCY – WHY IMPORTANT?

9 Technical Idea: Eman Mandour & Nader Tadros; Artistic Idea: Golo ENERGY EFFECIENCY – WHY MAKES SENSE?

10 BACKGROUND The Challenges GHG Emissions 1.Electricity Generation is the Largest contributor of GHG emissions - 33% 2.Transportation is second 27.2% 3.Industry is Third 27% Source: http://unfccc.int/resource/docs/natc/egync2.pdf

11 ICTs can have the greatest impact : -Energy generation, transmission/distribution and use: -Smart grids – integrate alternative E; Efficient -On the use side: in controlling variable rate motors (smart motor systems) -Smart buildings, smart industrial processes -Smart logistics & transportation -Dematerialization -Smart cities: bringing it all together in a sustainable human ecosystem 40 % of energy consumption comes from buildings (commercial & residential) -HVAC & lighting 75 % of the people live in cities ICT – GREATEST IMPACT

12 National Information Society Agency, Korea.

13 13 Take DSM Further THE ROLE OF ICT Smart Grid Applications Applying sensing, measurement and control devices with two-way communications to electricity production, transmission, distribution and consumption Link grid condition to system users, making it possible to dynamically respond to changes in grid condition. Includes an intelligent monitoring system that keeps track of all electricity flowing in the system Capability of integrating renewable electricity such as solar and wind Smart Grid Applications

14 What Does a Smart Grid Do? Three Categories Delivery Optimization Demand Optimization Asset Optimization 14 THE ROLE OF ICT Improve the efficiency and reliability of the delivery systems. Empower the end consumer to reduce consumption Manage the evolving demand and supply equation along the distribution feeder Application monitoring and diagnostic technologies to help manage the health, extend the useful life and to reduce the risk of catastrophic failure of electrical infrastructure.

15 …http://www1.eere.energy.gov/solar/segis.html SMART GRID MODEL

16 -Reliability -Security against (cyber) attacks / disasters -Ease of repair (remote repair) -Increased info to consumers about E use -Increased E efficiency -Integration of alternative energy resources -Integration of plug-in vehicles -Reduction of peak demand (demand side management) -Lower capital costs than alternative energy -Significant ROI: according to EIA SMART GRID BENIFITS

17 Key technologies for the smart grid

18 From GeSi Smart 2020 report. OECD. 2009. Smart Sensor Networks: Technologies and Applications for Green Growth. Dec. 2009. OECD, Paris, 48 pp. SMART GRID – ENVIRONMENTAL IMPACT

19 From GeSi Smart 2020 report. OECD. 2009. Smart Sensor Networks: Technologies and Applications for Green Growth. Dec. 2009. OECD, Paris, 48 pp. SMART GRID – CO2 REDUCTION POTENTIAL

20 Buildings Scope of energy efficiency: examples 20 Lighting retrofit – T8, T5, Electronic Ballasts, LED technology Lighting Controls – Timers and occupancy controls Day Lighting Lighting Reconfiguration Convert CAV Air Handling System to VAV Occupancy Sensor Control of HVAC Replacement with High Efficiency Units Variable Flow Pumping Reduce Run Time of Major HVAC equipment Demand Controlled Ventilation Enthalpy Economizer Chilled / Condenser Water Reset Technical Measures Energy-Efficient Motors Motor Variable Speed Drives Equipment Sequencing Proper sizing Cogeneration Behavioral Measures Potential Solutions – Energy Efficiency

21 BIM: for building design -Reduce energy consumption by making best use of environmental inputs: solar energy capture, passive heating, micro climate, wind, micro hydro, etc. -Efficient construction workflow -New buildings & retrofits -Select materials based on cost, env. impact, insulating / radiative qualities, etc. -The USA GSA requires BIM as a necessary step in designing buildings with energy and sustainability one of the key design considerations -Building designers and architects are supportive SMART BUILDINGS – TRENDS

22 Anyone there? Library? Technology? Fixtures? LIGHTING – Energy Efficiency LIVE!!

23 Lighting Retrofit – Use of electronic Ballasts – 20% - 30% LIGHTING – Energy Efficiency LIVE!! Lighting Demand based control -10% -Occupancy -Daylight Dimming

24 BMS FOR HVAC? Alarm? HVAC – Energy Efficiency LIVE!! Ventilation Demand based control CO2 sensors Fan coil units occupancy control CONTROL CENTRAL CHILLER PLANT

25 The nature of activity that powers the economy Will rural dwellers benefit? BARRIERS AND CHALLENGES Lack of awareness Lack of knowledge Lack of standards Energy subsidies Cost May lead to increase in GHG emissions initially

26 Confused? THANK YOU Ask Questions Please

27 Share of different sectors in total anthropogenic GHG emissions ( CO2-eq) IPCC. 2007. Climate Change 2007: Synthesis Report.

28 28 Background and problem definition Energy consumption increased from 35.3 Metric Ton of Oil Equivalent (mtoe) in 1995 to 69 mtoe in 2007 In 2020 Energy consumption is projected to be 130 mtoe – Almost double AGAIN !!!! Electricity generation – Mostly generated from fossil fuels - High Dam less than 10% Blackouts in summer – remember how Blackouts affected you during the holy month of Ramadan early this year GHG emissions increased from 84 tons of CO 2 in 1995 to 160 tons of CO 2 in 2007 Weather data collected for the period 1961- 2000 indicate a general trend towards: warming of the air temperature, increases in the number of hazy days and misty days, turbidity of the atmosphere, frequency of sand storms and hot days BACKGROUND


Download ppt "ICTs to Reduce Energy Consumption & GHG Emissions Cairo, 2010-11-02 Richard Labelle Consultant, Sam Gouda, Creara."

Similar presentations


Ads by Google