Presentation is loading. Please wait.

Presentation is loading. Please wait.

International Telecommunication Union Overview of the ITU Report on Boosting Smart Grids Through Energy Efficient ICT Flavio Cucchietti – Telecom Italia,

Similar presentations


Presentation on theme: "International Telecommunication Union Overview of the ITU Report on Boosting Smart Grids Through Energy Efficient ICT Flavio Cucchietti – Telecom Italia,"— Presentation transcript:

1 International Telecommunication Union Overview of the ITU Report on Boosting Smart Grids Through Energy Efficient ICT Flavio Cucchietti – Telecom Italia, Turin, Italy Franco Davoli, Matteo Repetto –University of Genoa, Italy Carlo Tornelli, Gianluigi Proserpio – RSE, Milan, Italy

2 Committed to Connecting the World Outline Climate change and GHG emissions Responsibility of the electrical system in GHG emissions The need for Smart Grids The role of ICT in reducing GHG emissions ICT and the Smart Grid Energy footprint of ICT infrastructures Smart grids in different economies 2

3 Committed to Connecting the World Climate change and GHG emissions GHG emissions are expected to grow much faster than in the last two centuries. GHG emissions are largely ascribable to production of electricity. 3

4 Committed to Connecting the World Responsibility of the electrical system in GHG emissions - 1 Large fluctuations in electricity demand during seasons and daily hours… … require overprovisioning power plants and the electrical grid. 4

5 Committed to Connecting the World Responsibility of the electrical system in GHG emissions - 2 Oil and coal fired power plants are the most widespread solution for bulk generation. They are responsible for GHG emissions for electricity production. Production is made by a mix of efficient - yet static - base bulk and dynamic - yet inefficient - generation during peak hours. 5

6 Committed to Connecting the World The need for Smart Grids Sustainability of the electrical system requires the evolution towards new paradigms (Smart Grid), pursuing high efficiency and integration of renewables this is expected to cut down GHG emissions. Issues for the implementation of Smart Energy Grids: Load management, Distributed Generation, Microgrids, Energy Storage, Grid Management, Market operations, Electrical Vehicles, … Much intelligence is needed to: retrieve, share, process, store and transmit information; make grid management automatic, reliable, resilient, safe and secure. 6

7 International Telecommunication Union The ICT sector can enable emission reductions in a number of ways: S tandardizing: ICT can provide information in the form of standards on energy consumption and emissions, across the sectors; M onitoring: ICT can incorporate monitoring information into the design and control of energy use; A ccounting: ICT can provide the capabilities and platforms to improve accountability of energy and carbon; R ethinking: ICT can offer innovations that capture energy efficiency opportunities across buildings/homes, transport, power, manufacturing and other infrastructures, and provide alternatives to current ways of operating, learning, living, working and travelling; T ransforming: ICT can apply smart and integrated approaches to energy management of systems and processes, including benefits from both automation and behavioural change and develop alternatives to high carbon activities, across all sectors of the economy. The role of ICT in reducing GHG emissions

8 Committed to Connecting the World The role of ICT in reducing GHG emissions Cutting off the carbon footprint By enabling smart applications: smart motors, smart buildings, smart logistics, smart grid, dematerialization; 15% of total predicted emissions! By reducing ICTs own footprint to avoid wasting part of the previous gains. 8

9 Committed to Connecting the World ICT and the Smart Grid ICT supplies the pillars for the development of the Smart Grid data management and processing communication infrastructures control and management operations Issues too many contexts system of systems heterogeneous communication technologies integration and interoperability 9

10 Committed to Connecting the World ICT and the Smart Grid – 2 Layout of the communication system: Distributed services and applications SOA, REST, Web Services Data models and information exchange CIM, IEC61850, DLMS/COSEM Networking SN, LAN/HAN, NAN/MAN, WAN Communication media and technologies Wired (Ethernet, xDSL), Power-Line (HomePlug, HomePNA, HomeGrid), Wireless (ZigBee, Z-wave, WiFi, WiMax, GSM, UMTS/LTE). 10

11 Committed to Connecting the World Energy footprint of ICT Energy footprint of ICT is continuously increasing. Large scale deployment for the implementation of Smart Grids will further raise current forecasts! 11

12 Committed to Connecting the World Energy footprint of ICT – 2 Homes and Distribution grids are expected to be the most critical environments. millions of such sites in the whole system. power consumption (Wh) number of devices overall consumption (GWh/year) Home1017,500,0001,533 Access1,28027,344307 Metro/transport6,0001,75092 Core10,00017515 Sources: 1) BroadBand Code of Conduct V.3 (EC-JRC) and inertial technology improvements to 2015-2020 (home and access cons.) 2) Telecom Italia measurements and evaluations (power consumption of metro/core network and number of devices) An example: Future broadband networks Energy footprint estimation 12

13 Committed to Connecting the World Energy footprint of ICT – 3 Energy usage of ICT equipment is increasing in homes, owing to: more ICT devices laptops, set-top-boxes, smart phones, handhelds, tablets, … ; most devices are left powered on even when not used often to maintain network presence; inefficient standby states 13

14 Committed to Connecting the World Energy footprint of ICT – 4 By considering only the home network (which is the most critical one, due to numerousness), with reference to a medium-size country (Italy) o devices energy consumption as per the EC BroadBand Code of Conduct 2012 target o 33,000,000 homes and small enterprises o Consumption of Meters: 2 W each – 578 GWh/year; Home gateway (ADSL – sharable with other functionalities): 5.35 W – 1547 GWh/year; 14

15 Committed to Connecting the World Energy footprint of ICT – 5 Consumption of Sensors/actuators, 10 elements per home (could be much more): o based on Low speed power line: 10 × 2 W each – 5780 GWh/year; o based on ZigBee: 10 × 0.25 W each – 723 GWh/year; Displaying device: 3 W – 867 GWh/year; no standby mode considered, as all devices today are expected to be always on. In this scenario, overall consumption per household could range between ~13 and ~30 W in the worst case, which results in ~3.7 – ~8.7 TWh per year. By assuming a figure of 2500 kWh/year for a typical household, the range above would correspond to a 4.5% to 10.5% energy consumption increase for each customer. 15

16 Committed to Connecting the World Energy footprint of ICT – 6 Technical considerations, all networking technologies 16

17 Committed to Connecting the World Energy footprint of ICT – 7 The path towards a Green ICT includes: Re-engineering of devices hardware energy-efficient silicon; reduction of complexity. Dynamic adaptation of performance power scaling; low-power idle. Smart standby states proxying network presence; virtualization. Estimated energy saving in 2015-2020 perspective telecommunication networks by the ECONET project – Telecom Italia use case. Both at device level whole network level (energy-aware traffic engineering) 17

18 Committed to Connecting the World Smart grids in different economies Electricity is a key driver for economic development and social wellness. Disparity among different countries is evident in production of electricity; grid infrastructures. Most developing countries have power grids with limited coverage and low efficiency. In many developing countries just a very small part of the population has access to the electrical grid! The need for Just Grid. 18

19 Committed to Connecting the World Smart grids in different economies – 2 World electricity generation from 1971 to 2009 by region (TWh). (Asia does not include China.) Regional electricity system use and loss of electricity 19

20 Committed to Connecting the World Smart grids in different economies – 3 Regional power pools in Africa (Maghreb power pool is not shown). High voltage transmission grid in Europe. 20

21 Committed to Connecting the World Smart grids in different economies – 4 Smart Grids have the potential to fill the gap sustainable and low-cost production of electricity through large integration of renewables; microgrids and islanding mode of operation for rural areas; improvement of efficiency by grid monitoring; reliable and cheaper supply of electricity by demand-response mechanisms; new business models to address specific needs of low-income customers and reduce administrative costs related to meter readings and billing. 21

22 Committed to Connecting the World Key issues, challenges and opportunities for ICT Modern paradigms often rely on rich and flexible data description and transmission o may turn into major transmission delays, network load and latency, o could lead to unacceptable performance for time-critical applications. Coexistence of multiple technologies o wireline offers higher performance, but with higher deployment costs (remote areas), o wireless provides cost-effective solutions, yet with worse performance and some limitations to reach underground installations; further, interferences are likely for unlicensed technologies. Survivability of the telecommunication network to blackouts o needed to enable automatic and prompt recovery from failures of the electrical grid, o guaranteed through back-up batteries and diesel generators lifetime of many hours (or even a day) in central offices, but few hours in small installations limited by technical, economical and environmental factors. 22

23 Committed to Connecting the World More information Contact: Cristina Bueti (greenstandard@itu.int)greenstandard@itu.int http://www.itu.int/ITU-T/climatechange/ 23

24 Committed to Connecting the World Thank YOU 24


Download ppt "International Telecommunication Union Overview of the ITU Report on Boosting Smart Grids Through Energy Efficient ICT Flavio Cucchietti – Telecom Italia,"

Similar presentations


Ads by Google