Presentation is loading. Please wait.

Presentation is loading. Please wait.

From ship-tethered to free drifting imaging systems in the ocean; What we have observed in the past and what we shall observe in the future to better understand.

Similar presentations


Presentation on theme: "From ship-tethered to free drifting imaging systems in the ocean; What we have observed in the past and what we shall observe in the future to better understand."— Presentation transcript:

1 From ship-tethered to free drifting imaging systems in the ocean; What we have observed in the past and what we shall observe in the future to better understand and model particle flux. Stemmann L., Guidi, L., Boss, E., Claustre, H. ` UPMC Université Paris 06, UMR7093, Laboratoire d’Océanographie de Villefranche, 06230, Villefranche-sur-Mer, France} School of Marine Sciences, 5706 Aubert Hall, University of Maine, Orono, ME 04469-5706 SS16: Opportunities in the Study of Ocean Particle Flux@

2 CO2 ? N: Nutriment P: Phytoplancton Z: Zooplancton D: Detritus CO2

3 Advection, turbulence CO2

4 Advection, turbulence  4D Observation of individuals and particles  Ecosystem Realistic Simplification  4D Observation of individuals and particles  Ecosystem Realistic Simplification CO2

5 Perspectives: Strong development of imaging systems and also their miniaturization for in situ monitoring 1) Laboratory instruments FLOWCAM, ZOOSCAN,... 2) In situ instruments used from ships UVP, VPR, SIPPER, Underwater Digital Holocamera,... 3) In situ instruments on autonomous vehicles SOLOPC Checkley et al., 2008 Benfield et al., 2007

6 Examples of PSD and vertical flux from ship tethered imaging sensors Short time scales Lampitt et al., 1993, North Atl. and then Graham et al., 2000, Monterey Bay Stemmann et al., 2000, Mediterranean Sea Goldthwait et al., 2006, Monterey Bay Hypothesis: DVM or diel cycle in upper turbulence Stemmann et al., 2002 Mediterranean Sea Long time scales

7 Examples of PSD and vertical flux from ship tethered imaging sensor (Guidi et al., session 58) Global Sequestration: 0.37 Gt C year -1 Global b: -0.75 897 estimates of b distributed over 34 provinces

8 Global biogeography of mesopelagic macrozooplankton 200 profils of the UVP4 (6 years of sampling) 50-1000m, no size measurments Sarcodines : an important component of macrozooplankton community (<40%). Definition of 9 provinces that fits Longhurst biogeochemical regions Stemmann et al., 2008 1000 profiles(Romagn an et al., session 72)

9 Opportunities in the Study of Ocean Particle Flux Global network of observations - ARGO-> BIOARGO+vision - fixed stations + vision - cruises of opportunity Oceanographic data center for QC and large diffusion Particulate Organic Carbon (size spectra) macro and mesoplankton (Taxa size spectra) -Ecosystem monitoring - Data assimilation in models for Carbone fluxes and marine ressources. Pico and microplankton (taxa, size spectra) CTD and geochemical data N P Z D

10 Systems based on optics NABE2008, Briggs et al., 2008 Monterey Bay, Petrik et al., 2013

11 11 Image in situ analysis (Size threshold) With a delay computer assisted recognition: Large Aggregates – Zooplankton (object ESD >500µm) Real time automatic counting of Large Particulate Matter (all object ESD>100µm) Particle size spectraZooplankton size spectraCTD Image acquisition (0-6000 m) images are saved System based on images acquisition and treatment

12 UVP data format for ODV (real time counting and sizing) // marc.picheral@obs-vlfr.fr // 2010-08-20T10:01:12 // baseuvp5_malina2009 // 31-Jan-000T // Ocean // Profiles // Particle abundance and volume from the Underwater Vision Profiler. the...... // Lars.stemmann[at]obs-vlfr.fr http://www.obs-vlfr.fr/LOV/ZooPart/Portal/ Laboratoire d'Oceanographie de Villefranche B.P. 28 Villefranche-Sur-Mer France +33 (0)4 93 76 38 11 +33 (0)4 93 76 38 34 http://www.obs-vlfr.fr/LOV/ZooPart/UVP/ http://www.obs-vlfr.fr/LOV/ZooPart/UVP/</Owner1 Cruise:METAVAR:TEXT:20;Station:METAVAR:TEXT:20;Rawfilename:METAVAR:TEXT:20;UVPtype:METAVAR:TEXT:6;CTDrosettefile name:METAVAR:TEXT:40;yyyy-mm-dd hh:mm:METAVAR:TEXT:40;Latitude [degrees_north]:METAVAR:DOUBLE;Longitude [degrees_east]:METAVAR:DOUBLE;Depth [m]:PRIMARYVAR:DOUBLE;Sampled volume[L];LPM (0.06-0.53mm)[#/L];LPM (0.53- 1.06mm)[#/L];LPM (1.06-2.66mm)[#/L];LPM (0.06-2.66mm)[#/L];LPM biovolume (0.06-0.53mm)[ppm];LPM biovolume (0.53- 1.06mm)[ppm];LPM biovolume (1.06-2.66mm)[ppm];LPM biovolume (0.06-2.66mm)[ppm];LPM (0.06-0.07mm)[#/L];LPM (0.07- 0.09mm)[#/L];LPM (0.09-0.11mm)[#/L];LPM (0.11-0.14mm)[#/L];LPM (0.14-0.17mm)[#/L];LPM (0.17-0.21mm)[#/L];LPM (0.21- 0.27mm)[#/L];........;LPM biovolume (4.22-5.32mm)[ppm];LPM biovolume (5.32-6.7mm)[ppm];LPM biovolume (6.7- 8.44mm)[ppm];LPM biovolume (8.44-10.64mm)[ppm];LPM biovolume (10.64-13.4mm)[ppm];LPM biovolume (13.4- 16.88mm)[ppm];LPM biovolume (16.88-21.27mm)[ppm];LPM biovolume (21.27- 26.79mm)[ppm];Temp;Trans;Fluo;Sal;Dens;svan;N2;sigt;theta;sigthe;FreezT-;O2;pH;NO3;Par;SPar malina2009;malina001;HDR20090718234959;uvp5;0902_001;2009-07-18 23:49:59;70.4808;- 135.1083;5;79.56;405.8698;0.33937;0;406.2092;0.53393;0.054187;0;0.58812;0.000000;0.000000;255.417300;76.533434;38.800905 ;21.669180;7.302665;4.160382;1.458019;0.527903;0.226244;0.075415;0.037707;0.000000;0.000000;0.000000;0.000000;0.000000; 0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.126479;0.085347;0. 076972;0.076662;0.049646;0.053766;0.038764;0.026295;0.023097;0.014930;0.016160;0.000000;0.000000;0.000000;0.000000;0.00 0000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;0.000000;1.941000;83.750000;0.000000;NaN; NaN;NaN;NaN;NaN;NaN;NaN;NaN;NaN;8.217000;-0.278000;32.216000;110.590000 malina2009;malina001;HDR20090718234959;uvp5;0902_001;2009-07-18; MALINA cruise: 154 UVP profils (25- 1800m), one PSD every 5 m, with CTD, Rosette, 8Mo CAN BE SEND BY ARGO, IRIDIUM MALINA cruise: 154 UVP profils (25- 1800m), one PSD every 5 m, with CTD, Rosette, 8Mo CAN BE SEND BY ARGO, IRIDIUM METADATA: context METADATA: file content DATA adding 44000 images 300 Mo ARGOS, IRIDIUM TRANSMISSION ? adding 44000 images 300 Mo ARGOS, IRIDIUM TRANSMISSION ?

13 o AGREED PROCEDURES (image format, treatment, semi- automatic recognition, intercalibration) o AGREED DATA MANAGEMENT o AGREED DATA DISTRIBUTION o AGREED MODELING FRAMEWORKS o SUMMER SCHOOLS FOR THE USERS The biological, particle community has not reached yet a sufficient maturity in using images. These are propositions that we could discuss now building on the biogeochemical community experience THE KEY OF THE SUCCESS: THE KEY OF THE SUCCESS:

14 Functional groups Size spectra for particles, some zooplankton groups Functional groups Size spectra for particles, some zooplankton groups The past: box models Stemmann and Boss (2012) The Future: box models + size spectra

15 Thank you By the way, do you know what they are ???

16 Known: the ocean is a complex soup of particles Not well know but will improve Particle spatial distribution, Particle transport as a function of size in situ Particle size spectra in relation to plankton community Particles shapes, organic matter quality (multispectral imaging) Particles ballast (optical properties) Not known and difficult to measure/estimate processes acting on flux attenuation (bacteria/zooplankton) and impact on the other elements (TEI) Impact of coagulation and fragmentation from surface to the deep (TEP role)

17 SystemWhereTechnologySize-spectraReference Flow CamLab (future in situ) Camera10 – 1000 μmSieracki et al. 1998 HIACLabLight extinction1.3 – 600 μmStemmann et al. 2008 LISSTLab/in situLaser1.25 – 500 μmKarp-Boss et al. 2007 LOPClab/in situLaser beams100 – 3000Herman et al. 2004 HoloMarin situHolography5 – 250 μmKatz et al. 1999 SIPPERin situLinescan-Camera>100 µmSamson et al. 2001 UVPin situCamera CCD100 – few cmPicheral et al. 2010 Par Camin situCameraWefer and Ratmeyer, 1996; Iversen et al., 2001 VPRin situCamera100 – 1 cmDavis et al. 1992 FlowCytometyin situLaser and camera1-100µmSosik Non exhaustive review of instruments sizing particles used in marine systems

18 Examples of zooplankton from ship tethered optics and UVP (Romagnan et al., session 72) Stemmann and Boss, 2012 UVP, Mediterranean sea Forest et al., 2012 UVP, Arctic Stemmann and Boss, 2012 UVP, Tropical S. Pacific Jackson and Checkley (2011) SOLOPC data Monterey Bay

19 Provide Indicators of ecosystem status (abundance, biomass, taxa, size spectra), Can be obtained using lab and in situ instruments, they provide high frequency data, better technologies These indicators can be used to develop mathematical models also for zooplankton when size is important - zooplankton size spectra to get information on physiological rates (Platt & Denman 1978,... Baird et al., 2004, 2010, Zhou 2006, Maury et al.,2007 ). - vertical distribution of appendicularian and effect on vertical fluxes (Lombard et al., 2009). - appendicularians in recent PFT models (Berline et al., 2010). - vertical distribution of particle fluxes (Stemmann et al., 2004). - and particle dynamics models (see previous slide)

20 Non exhaustive review of particle size structured models Focus of the modelSpatial pattern Constrain with dataSource Coagulation in deep ocean, first equation for processes 0Dyes and no McCave 1984 Phytoplankton coagulation0Dphytoplankton time series Jackson et al., 1990 Kiorboe et al., 1994 Phytoplankton coagulation and fragmentation 0Dyes, particle spectra from mesocosm Jackson, 1995 Ecosystem model with coagulation no Ruiz, 1997 Ecosystem model with 2D spectra for particles 0Dno Jackson et al., 2001 Particle transformation in mesopelagic layer 1Dyes, in situ particles spectra Stemmann et al., 2004a, b Ecosystem model with coagulation 1D to 3D no vertical flux Kriest and Evans, 1999 Kriest and Oschlies, 2008 Ecosystem model with coagulation, ballast 3Dyes, vertical flux Gehlen et al., 2006 where are the data on particle size spectra ?

21 // marc.picheral@obs-vlfr.fr // 2011-05-04T22:09:43 // K:\uvp5_gatekeeper2010\results\baseuvp5_gatekeeper // 31-Jan-000T // Ocean // Profiles // Particle abundance and volume from the Underwater Vision Profiler. The Underwater Video Profiler is designed for the quantification of particles and of large zooplankton in the water column. Light reflected by undisturbed target objects forms a dark- field image. // Lars.stemmann[at]obs-vlfr.fr http://www.obs-vlfr.fr/LOV/ZooPart/Portal/ Laboratoire d'Oceanographie de Villefranche B.P. 28 Villefranche-Sur-Mer France +33 (0)4 93 76 38 11 +33 (0)4 93 76 38 34 http://www.obs-vlfr.fr/LOV/ZooPart/UVP/ http://www.obs-vlfr.fr/LOV/ZooPart/UVP/</Owner1 Cruise:METAVAR:TEXT:20;Station:METAVAR:TEXT:20;Rawfilename:METAVAR:TEXT:20;UVPtype:METAVAR:TEXT:6;CTDrosettefil ename:METAVAR:TEXT:20;yyyy-mm-dd hh:mm;Latitude [degrees_north]:METAVAR:DOUBLE;Longitude [degrees_east]:METAVAR:DOUBLE;Zm (m):DOUBLE;Zi (m):DOUBLE;Ze (m):DOUBLE;Sampled vol. (m3):DOUBLE;annelid(#/m3):DOUBLE;crust_cop(#/m3):DOUBLE;crust_other(#/m3):DOUBLE;det_aggregate(#/m3):DOUBLE;det_f eces_like(#/m3):DOUBLE;det_fiber(#/m3):DOUBLE;fish(#/m3):DOUBLE;gel_carn_chaetognath(#/m3):DOUBLE;gel_carn_ctenopho re(#/m3):DOUBLE;gel_carn_medusa(#/m3):DOUBLE;gel_carn_siphonophore(#/m3):DOUBLE;gel_filt_app(#/m3):DOUBLE;gel_filt_ other(#/m3):DOUBLE;gel_other(#/m3):DOUBLE;moll_pteropod(#/m3):DOUBLE;other_heart_like(#/m3):DOUBLE;phyt_diatom_chai n_like(#/m3):DOUBLE;phyt_tricho(#/m3):DOUBLE;polychaetha(#/m3):DOUBLE;protozoa_sarcomastigophora(#/m3):DOUBLE;proto zoa_sarcomastigophora_foram_like(#/m3):DOUBLE;protozoa_sarcomastigophora_globule(#/m3):DOUBLE;protozoa_sarcomastigo phora_legs(#/m3):DOUBLE;protozoa_sarcomastigophora_phaeodarea(#/m3):DOUBLE;protozoa_sarcomastigophora_polycystina(#/ m3):DOUBLE;protozoa_sarcomastigophora_radiolaria(#/m3):DOUBLE;protozoa_sarcomastigophora_spines(#/m3):DOUBLE;to_ski p(#/m3):DOUBLE gatekeeper2010;m1_003;HDR20100711001202;uvp5;003;2010-07-11 00:12:02;36.7392;- 122.0397;2.6769;0;25;1.8075;0;0;0;522.13;771.0927;0;0;0;0;0;0;0;0;0;0;0;342.3237;0;0;0;0;0;0;0;0;0;0;0 gatekeeper2010;m1_003;HDR20100711001202;uvp5;003;2010-07-11 00:12:02;36.7392;- 122.0397;39.3443;25;50;0.39;0;0;0;3173.0769;11474.359;0;0;0;0;0;0;0;0;0;0;0;993.5897;0;0;0;0;0;0;0;0;48.0769;0;16.0256 UVP data format for ODV (with recognition on images) campagne MALINA: 44000 images 2.1 Mo for data file 300 Mo for images ARGOS, IRIDIUM TRANSMISSION ? campagne MALINA: 44000 images 2.1 Mo for data file 300 Mo for images ARGOS, IRIDIUM TRANSMISSION ? METADATA: context METADATA: file content DATA adding 44000 images 300 Mo ARGOS, IRIDIUM TRANSMISSION ? adding 44000 images 300 Mo ARGOS, IRIDIUM TRANSMISSION ?


Download ppt "From ship-tethered to free drifting imaging systems in the ocean; What we have observed in the past and what we shall observe in the future to better understand."

Similar presentations


Ads by Google