Presentation is loading. Please wait.

Presentation is loading. Please wait.

8/13/2004 Stefan Ballmer, MIT / LIGO Hanford G040339-00-0 1 Directional Stochastic Search: a Gravitational Wave Radiometer Stefan Ballmer Massachusetts.

Similar presentations


Presentation on theme: "8/13/2004 Stefan Ballmer, MIT / LIGO Hanford G040339-00-0 1 Directional Stochastic Search: a Gravitational Wave Radiometer Stefan Ballmer Massachusetts."— Presentation transcript:

1 8/13/2004 Stefan Ballmer, MIT / LIGO Hanford G040339-00-0 1 Directional Stochastic Search: a Gravitational Wave Radiometer Stefan Ballmer Massachusetts Institute of Technology LIGO Hanford Observatory

2 8/13/2004 Stefan Ballmer, MIT / LIGO Hanford G040339-00-0 2 The idea 2-site full-sky stochastic search is limited to lower frequency  higher frequencies (>~100Hz) average out in source position integration But the nearby universe is not isotropic:  Our galactic center  Nearest galaxy: M31 Andromeda  Virgo galaxy cluster  Voids  Compare different sky patches! We can get source position information from:  Signal time delay between different sites (sidereal time dependent)  Sidereal variation of the antenna pattern  Recipe: time-shift and cross-correlate!

3 8/13/2004 Stefan Ballmer, MIT / LIGO Hanford G040339-00-0 3 Signal and Noise: Matched Filtering Use sidereal time & sky position dependent optimal filter: where Following notation of gr-qc/9710117

4 8/13/2004 Stefan Ballmer, MIT / LIGO Hanford G040339-00-0 4 The antenna pattern DC part Look at frequency independent (geometric) part first: Interpretation:  Power coupling loss relative to 2 permanently optimally aligned detectors How bad is it for existing interferometers?

5 8/13/2004 Stefan Ballmer, MIT / LIGO Hanford G040339-00-0 5  DC for various targets ObjectLHO-LLOLHO-VIRGOLLO-VIRGO Galactic center0.1890.2560.251 M31 Andromeda0.1580.2960.231 M810.0640.4650.114 M87 Virgo cluster0.2020.2520.262

6 8/13/2004 Stefan Ballmer, MIT / LIGO Hanford G040339-00-0 6 Coupling from other sky directions Antenna pattern, DC part  DC

7 8/13/2004 Stefan Ballmer, MIT / LIGO Hanford G040339-00-0 7 The antenna pattern for a flat spectrum Optimal filter (and therefore spatial resolution in the sky) depends on:  Detector power spectra (known)  Frequency content of expected signal (not known) Source modeling possible, but arguably the simplest assumption is a flat signal spectrum  For this case and assuming the LIGO SRD curve (shape only) we can calculate the full antenna pattern.

8 8/13/2004 Stefan Ballmer, MIT / LIGO Hanford G040339-00-0 8 The antenna pattern for a flat spectrum  DC

9 8/13/2004 Stefan Ballmer, MIT / LIGO Hanford G040339-00-0 9 The sensitivity Again for a flat signal spectrum we have For 2 interferometers at the current H1 sensitivity this is

10 8/13/2004 Stefan Ballmer, MIT / LIGO Hanford G040339-00-0 10 The work to do Implementation Almost identical to current Stochastic pipeline  Only modification: time-dependent overlap reduction function


Download ppt "8/13/2004 Stefan Ballmer, MIT / LIGO Hanford G040339-00-0 1 Directional Stochastic Search: a Gravitational Wave Radiometer Stefan Ballmer Massachusetts."

Similar presentations


Ads by Google