Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Role of Chemistry in Innovation Chemistry for Future Energy Supply K. Wagemann, DECHEMA e.V.

Similar presentations

Presentation on theme: "The Role of Chemistry in Innovation Chemistry for Future Energy Supply K. Wagemann, DECHEMA e.V."— Presentation transcript:

1 The Role of Chemistry in Innovation Chemistry for Future Energy Supply K. Wagemann, DECHEMA e.V.

2 2 Two hot topics in the present political discussions: Energy Supply Climate Change (Adaptation & Mitigation)

3 3 Energy in the SusChem Implementation Action Plan Energy –Alternative energy sources Photovoltaic Fuels production from biomass Fuel cells (Metal)nanoparticles as fuel Wind power –Energy conservation Efficient lighting Insulation –Energy storage Batteries Gas storage Supercapacitors

4 4 Energy in the SusChem-Deutschland IAP Photovoltaics Fuel cells Efficient use of energy - inorganic LEDs Efficient use of waste heat from industrial plants Li-Ion batteries for stationary and mobile applications Super caps H 2 production and storage Exhaust gas treatment and catalysis Light weight materials Biobutanol

5 5 Chemistry and Energy German Coordination Group Chemical aspects of energy research: DECHEMA - Gesellschaft für Chemische Technik und Biotechnologie e.V. DBG – Deutsche Bunsen Gesellschaft für Physikalische Chemie e.V GDCh – Gesellschaft Deutscher Chemiker e.V. DGMK – Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V. VDI-GVC – VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen VCI – Verband der Chemischen Industrie e.V.

6 6 Position Paper

7 7 Position Paper Thesis The demand for chemical solutions will increase: –Fuel cells: Catalysts, Electrolytes, Membranes –Solar cells: Organic, Polymeric, Easy to Process Systems –Batteries: Electrodes, Electrolytes –Thermoelectrica: Nanostructured Materials –CO 2 -Sequestration: Absorption, Chemical Conversion –Heavy Oils and Coal (and Biomass): Conversion to Fuels

8 8 Energy Supply Fuels Bioenergy Photovoltaics Fuel cells Thermoelectrics Collectors H 2 -Production Energy storage Mobile batteries Stationary batteries Supercaps Chemicals Energy efficient production processes Catalysis Microreaction techn. New reaction media Process integration OLEDs Superconductors Lightweight materials Thermal insulation Efficient use of energy The role of chemistry CO 2 -Utilisation

9 Chemistry has a role for the future energy supply!

10 10 Backup

11 11 Chemistry-related CO 2 -Emissions Numbers of 2004, Source: Ministry of Economics and Technology Energy Industry (total) Chemistry = 861 Mio. t CO 2

12 12 Production of Hydrogen Alternatives –Direct thermal water splitting (without catalyst: T > 2.500°C) catalytic redoxcatalytic –Photocatalytic water splitting at solid surfaces –Biomimetic photosystems in liquid phase (Ru-Systems) –Biohydrogen

13 13 Photovoltaics Thin film solar cells (a-Si, µCSi, CdTe...) Multibandgap-cells Alternatives: Organic semiconductor systems Photoelectrochemical cells (Grätzel-Cells)

14 14 Materials for Collectors Coatings today: –Black Chromium –Black Nickel Efficient, but processing (galvanisation) not environmentally benign Coatings Future: –Al 2 N 3 –Carbides –TiNO x Better efficiency (absorption and reflection) but processing costs high

15 15 Thermoelectrical Devices Principle –Materials: Bi 2 Te 3, Bi 2 Se 3, Sb 2 Te (RT) / PbTe-, SiGe-Alloys (550 – 800 K) –Energy Source: In general lost heat –Applications: Energy independent micro sensors (self-powered sensors) self-powered micro-devices Auxiliary power systems in automotives Cooling of Photovoltaic devices

16 16 Thermoelectrical Devices Future: Higher Efficiency using nanostructured materials

17 17 CO 2 -Sequestration & Utilisation Carbon Capture and Storage Technologies

18 18 CO 2 -Sequestration Research Topics (Chemistry related) –Coal Gasification –CO 2 -Capture Absorption Membranes –Materials / Corrosion (CO 2 (l) / H 2 O / High Salt Concentration)

19 19 CO 2 -Utilisation Energy Storage Systems Dry Reforming CO 2 as C 1 -Building Block Artificial Photosynthesis Microalgae–Cultivation Better Plants

20 20 CO 2 -Utilisation Energy Storage Systems CO 2 + H 2 CH 3 OH + H 2 O NEDO-Project, Japan (since early 90ies) Japan Australia CO 2 MeOH ZnCrO-catalyst

21 21 CO 2 -Utilisation Steamless Carbon Dioxide Reforming (Dry Reforming) CO 2 + CH 4 2CO + 2H 2 Idea: Exploitation of remote gas fields (stranded gas) Discussion Platforms: –Eranet Chemistry –SusChem-D: September Workshop

22 22 CO 2 -Utilisation Artificial Photosynthesis

23 23 CO 2 -Utilisation Artificial Photosynthesis Light harvesting supramolecular components (Balzani, Bologna)

24 24 CO 2 -Utilisation Artificial Photosynthesis General Problems –Thermal – Stability –Photo(oxidative)-Stability –Light-Harvesting European Network: Solar-H (

25 25 CO 2 -Utilisation CO 2 as C 1 Building Block Problem: Inertness O C OR1OR1 R2R2 C OR2OR2 R1OR1O R3R3 R4R4 O C OR1OR1 R2OR2O CO 2 Acetales CarbonatesEster

26 26 CO 2 -Utilisation CO 2 as C 1 Building Block Activation by Carboanhydrase: CO 2 + H 2 O HCO H + Aktive Center of Carboanhydrase

27 27 CO 2 -Utilisation Activation of CO 2 Active Species: Carbamate M. Antonietti, Angew. Chemie 2007, 119, 2773 ff

28 28 CO 2 -Utilisation Biorefineries Bioethanol/BioDiesel (1 st Generation) Biofuels 2 nd Generation –BTL ( FT-Catalysts) –Lignocellulose Ethanol Biogas Chemical Building Blocks

29 29 CO 2 -Utilisation Biogas One Alternative: Zinkoxid H 2 S+ZnO H 2 O+ZnS °C (!) H 2 S-content: ppb

Download ppt "The Role of Chemistry in Innovation Chemistry for Future Energy Supply K. Wagemann, DECHEMA e.V."

Similar presentations

Ads by Google