Presentation is loading. Please wait.

Presentation is loading. Please wait.

Energy Efficiency in Manufacturing

Similar presentations


Presentation on theme: "Energy Efficiency in Manufacturing"— Presentation transcript:

1 Energy Efficiency in Manufacturing
Prof. Dr.-Ing. Dr.-Ing. E.h. Dr. h.c. Fritz Klocke Dipl.-Ing. Dieter Lung Dipl.-Ing. Ralf Schlosser Bilbao, Gesamtzeit 30 min = Moderation/Wechsel (5min) + Vortrag (25min)

2 Agenda Introduction 1 Fields of Action in Energy- and Ressource-Efficient Manufacturing 2 Balancing 3 Adapted Process-Design leading to Resource- and Energy-Savings 4 Summary 5

3 Industrial society in strained relations
Environment, climate, recources Overall balance Economy growth welfare Individual and collective needs Quelle: Acatech, oct. 2007

4 What is the relevance of manufacturing engineering?
Megatrends Energy Mobilit Mobility Environment Technical Science and Engineering have to deliver Solutions! Health Communications Safety Der Betriebsmittelbau leistet einen entscheidenden Beitrag zur Bewältigung der zentralen Zukunftsthemen durch ganzheitliches Produktverständnis durch innovative Produktrealisierung durch maximale Produktivität …und darf nicht nur durch die OEMs getrieben sein! What is the relevance of manufacturing engineering? Quelle: Fraunhofer-Gesellschaft

5 Moore Goods with less Resources
How will we be able to cope with the polylemma of environment, resources and demography? Demographical development 2005: 6,5 billion humans 2040: 10 billion humans1 Environment and resources Finite resource availability Climate change Change of paradigms We must cut this gordian knot Resources are available in limited supply Moore Goods with less Resources 1 Source: United Nations, 2007

6 Company: Main target is profit on a long term perspective
Energy consumption in Germany Challenges Resource efficiency Energy efficiency Renewable resources 1 state of the art machining center needs about kWh electricity per year ~ 10 Porsche Boxster (CO2-emission, km) ~ 12 living houses (electricity - each 3600 KWh per year) ~ 228 fridges (each 198 KWh per year) Energy efficiency – Saves cost and increases popularity Source: German Ferderal Bureau of Statistics, 2007

7 Energy flow in Petajoule of the Federal Republik of Germany (2008)
Import 4.147 Domestic production 51 Stock removal 2.645 Industry 2.575 Traffic 2.502 Households 1.404 Trade, service, business 2.078 Export and bunkering 519 Non energetic consumption Bestandsentnahme: supply removal/extraction Nichtenergetischer Verbrauch: Nonenergetic consumption 3.570 Conversion losses 519 Consumption in the energy sectors 35 Statistical differences Source: Acatech, AGEB, 2009

8 Agenda Introduction 1 Fields of Action in Energy- and Ressource-Efficient Manufacturing 2 Balancing 3 Adapted Process-Design leading to Resource- and Energy-Savings 4 Summary 5

9 Fields of Action and Research Topics
optimisation of process-stability and -quality (zero-error production) resource-efficiency of mechanical manufacturing processes and systems energy-efficiency of thermal and chemical manufacturing processes closed resource-cycles within all process chains and systems loss-free infrastructural performance of production and manufacturing facilities development of methods for sustainable resource application Ressource-Efficiente Production and Sustainable Processes Input-Flow Prozess Output-Flow Process- steps n Information Material Energy Aus der Studie ist eine Ausschreibung beim BMBF erfolgt, bei der 31 Projekte mit einem Fördervolumen von 50 Mio € gefördert werden. figure: Ressource-Flows of Production-Systems Source: EFFPRO Study from the German Federal Ministry of Education and Research

10 Agenda Introduction 1 Fields of Action in Energy- and Ressource-Efficient Manufacturing 2 Balancing 3 Adapted Process-Design leading to Resource- and Energy-Savings 4 Summary 5

11 Energy efficient manufacturing Balance envelopes
Production site How can we balance manufacturing? Production site envelope Production site evaluation Machine tool envelope Machine tool assesment Process envelope Assesment models on a physical process level Machine tool Process Source: Index, Daikin, AL-KO, Boge, Schuch

12 CECIMO Activities Self Regulatory Initiative
Motivation: “Our vision as a responsible, sustainable and highly innovative sector is to cover environmental aspects early in the process from R&D and design through to production, comprising also post-production throughout the whole life cycle of our products.” Challenge: Each machine tool should is an individual product with its own environmental performance improvement potential, a standardisation is not target-orientated Approach: The intended goal of the Self Regulatory Initiative (SRI) is to increase the ecological performance of each machine tool while maintaining the freedom of innovation It will not be bound to mandatory requirements. This allows the machine tool industry to define their own rules in the framework of the Ecodesign Directive, while structure, products and customer needs are taken into consideration. Source: CECIMO, Gildemeister, DST, Heller

13 Sustainable Entrepreneurship
Assessment of a tool changer in machine tools (ECO-Footprint) The life cycle as the balance envelope X-Module PT Y-Module PT Z-Module PT Head PT Tool changer PT Coolant system PT Machine enclosure PT Hydraulic/ pneumatic PT Packaging PT Sum PT 11140,7 9116,7 3427,0 15073,0 814,8 2417,1 113,8 3137,0 479,2 45719,3 % Eco-Points PT Eco-Indicator PT Inputs/Outputs Activity Life cycle phase 3,7 30,1 0,086 C45 Material Raw material manufact. 3,1 25,2 0,024 1 Truck (24t) Transport (3000km) Logistics 0,7 5,8 0,026 Electricity Energy consumption Manufacturing 91,9 748,8 Use and maintenance 350 kg 0,6 4,9 0,014 Disposal 100 814,8 Sum 350 1050 224 Unit kg tkm kWh 28800 Amount Green Machining Green Technology Green Factory Sustainable Entrepreneurship Existing Methods: Life Cycle Assesment Life cycle focus energy and mass flow orientation Life Cycle Costing Existing deficit: Missing knowledge about the real energy and resource flows in each product life cycle phase Missing knowledge about the relations between energy and resource consumption and their benefit Requirement for new methods: Assessment of real energy and mass flows Relations between energy and mass flows and product functionalities Identification of cross relations between different life cycle phases Source: PROLIMA

14 Assessment of resource consumption with Environmental Product Lifecycle Management
Costs categories Product structure Life cycle phases Cost element Machine enclosure Labour costs Manufacturing Source: IEC

15 Ancillary units and losses
Performance distribution in maschine tools Today Process performance Input power 100% 25% Chip conveyor Electronics 88% Compressed air Hydraulics - 11% Drives - 12% Cooling - 15% Cooling unit - 20% 75% Das Energiefluss Diagramm gibt wieder das in einem typischen Prozess (video laufen lassen) neben den Hauptkomponenten (Spindel, Elektronik und Antriebe) zahlreiche Hilfsbetriebe für die Bearbeitung notwendig sind. Insbesondere Kühlung und Hydraulik haben erheblichen Anteil an der Leistung einer typischen Werkzeugmaschine. Überschlagweise resultiert daraus eine Aufteilung von nur 25% der Eingangsleistung auf den eigentlichen Prozess (Frässleistung, Sperrluft, alles was für den Prozess unabdingbar ist), hingegen 75% quasi als Verlust zu rechen sind. Bei vielen der Komponenten sind Einsparmöglichkeiten gegeben. Spindle - 30% Ancillary units and losses Source: Measurements according to VDW, INDEX 2008, EFFPRO, FHG 2008, Gildemeister, DST, Heller Source: BMW

16 Power demand in a cutting process
Peaks occur due to: gaining operating conditions acceleration of the spindle Three areas of power demands can be distinguished: „Standby-Load“ (constant, only depending on machine tool) „Idling-Load“ (variable, depending on machine and process) „Process-Load“ (variable, depending on process parameters) t Process Idle Standby Illumination, Air conditioning, Compressed air, Cooling lubricants … Machine tool Periphery constant P variable tmain tcycle tnon pro Um einen Prozess energetisch richtig zu bilanzieren müssen auch die Grundlasten mit hinzu gezogen werden, die von der Peripherie erzeugt werden (Belüftung, Beleuchtung….)

17 Agenda Introduction 1 Fields of Action in Energy- and Ressource-Efficient Manufacturing 2 Balancing 3 Adapted Process-Design leading to Resource- and Energy-Savings 4 Summary 5

18 Balancing approaches for the electrical energy consumption of manufacturing processes (drilling operation) Power consumption → reduce process parameters Energy per unit → increase process parameters Cutting velocity /(m/min) Feed per tooth f / mm Cutting power Pe / W Cutting velocity /(m/min) Feed per tooth f / mm Specific cutting energy Ee,spec. = Ee/Qz In den Diagrammen ist nur die Zerspanleistung bzw. Spezifische Energie dargestellt. Wenn die Grundlast der Umgebung mit berücksichtigt wird, erhöht sich der Effekt. For real process evaluation the process result has to be related to the changes on the product. For cutting processes the relation of the specific energy Ec,spec=Ee/Qz is a workpiece independent relation.

19 Energy Efficiency by Short Processing Time: High Requirements for Process Automation
Distribution primary time second. time Zeit Time for tool change 2 4 6 8 10 12 14 16 18 [s] conventional NC- Machine Tool 38% Processing 15s tool change n+ spindle Positioning n- 62% conventional NC- Machine Tool, improved cutting parameters 59% 8,5s n+ n- 100 mm 41% HPC Machine Tool, parameters implemented 25% 2s + - 75% Exemplary Drilling Process: Positioning 200 mm Diameter 12 mm Depth 20 mm Distance of Holes 100 mm HPC Machine Tool, desired parameters That with the change from conventional to high productivity cutting the cycle time was reduced a lot and that the main time was reduced from 62% to 13% of the cycle time which also means that only 13% of the cylce are productive. Therefore a compromise have to be found between the height and the width of the peaks for tool change and positioning. 13% <1,5s + - 87% Source: AWK08, Heidelberger Druckmaschinen

20 Resource Saving by Process Modification and –Substitution An example in Bevel Gear Manufacturing
Conventional process chain Forging Soft turning, drilling, tapping with cooling lubricant Gear cutting with lubrication Case hardening Grinding cooling lubricant Gear lapping Screwing 3. Optimisation step 2. Optimisation step Optimisation step 1. 3. Forging Soft turning, drilling, tapping with cooling lubricant Gear cutting with lubrication Case hardening Grinding cooling lubricant Gear lapping Screwing Soft turning with cooling lubricant Soft turning with cooling lubricant Dry gear cutting Gear cutting dry Hard turning Hard turning Welding Welding Wet machining: Cutting material: HSS Coating: TiN Elimination lubrication/ year ca l Dry machining: Cutting material: VHM Coating: TiAlN New process parameters: Feed f Cutting speed vc Screwing of crown wheel : - Process drilling and tapping - central cooling lubricant system Elimination cooling lubricant system, consumption/ year Energy: 1,15 Mio. kW/h Medium: m³ Filter fleece: ca. 45 t Welding of crown wheel : - Process Elimination of drilling and tapping Elimination of a central cooling lubricant system Source: BMW

21 Balancing product features in the manufacturing phase Increasing product functionality
Process i Goal: Increase product functionality and duration of usage phase Functionality is influenced by surface and rim zone properties, which are induced by process chains, however the correlation is more or less unknown Necessity for research: Explore correlation between surface and rim zone and functionality Identification of process chains which improve functionality Identification of process parameters which improve functionality Grinding, Hard-turning, ... Parameters xi,j Feed vw, Cutting speed vc, ... Surface properties yi,k Roughness, Hardness, Residual stress, microstructure, ... Eine Möglichkeit, die Dauer der Nutzung zu Erhöhen, besteht in der Verbesserung der Funktionalität. (Bsp. Wälzlager) Gegenwärtig sind aber die Einflüsse der Oberfläche und der Randzone auf die Funktionalität nur Teilweise bekannt. Es ist unbekannt, welche Oberflächen- und Randzoneneigenschaften einen Einfluss auf die Funktionalität besitzen und welche Kenngrößen diese funktionsrelevanten Eigenschaften am besten beschreiben. Darüber hinaus ist unbekannt, welche Ausprägungen diese Kenngrößen für eine Verbesserung der Funktionalität annehmen müssen. Es bedarf einer Methodik, mit der funktionsunabhängig die funktionsrelevanten Oberflächeneigenschaften und –kenngrößen sowie deren Ausprägungen identifizieren werden können. Funktionsunabhängig bedeutet in diesem Zusammenhang bedeutet die Funktionsunabhängigkeit, dass sich die Methodik auf verschiedene Funktionen anwenden lässt. Functionality f Rolling fatigue life, ...

22 Development of a methodology Technology navigator
All relevant characteristics in a single portfolio Function footprint defines ideal surface and rim zone Technology chains may be compared through further economical and ecological characteristics Surface Technology navigator Technological characteristic Claim Roughness Rz Roughness Ra Residual stress ... value . Function forecast T1 T2 rel. resource consumption Energy demand Resource demand Material cut-off Unit cost Eco- characteristic Im Technologienavigator können unterschiedliche Technologien miteinander verglichen werden. Dies setzt die Kenntnis der in der vergangenen Folie beschriebenen Korrelation zwischen Fertigungsverfahren, Oberflächen- und Randzoneneigenschaften sowie Bauteilfunktion voraus. Weitere ökonomische und ökologische Kenngrößen helfen die effiziente Prozesskette zu identifizieren. Function Footprint Technology Footprint process chain T1 Technology Footprint process chain T2

23 Agenda Introduction 1 Fields of Action in Energy- and Ressource-Efficient Manufacturing 2 Balancing 3 Adapted Process-Design leading to Resource- and Energy-Savings 4 Summary 5

24 Boundary Conditions: Circle of Innovation
Social climate Willingness to change Chance utilization Confidence in experts and future People Science and invention Research, teaching, education Creativity and enabler Innovation and market Entrepreneur, Consumer Economy efficiency and implementation Sustainable growth by innovation Sustainable growth by innovation Knowledge Knowledge Money Money People Government general conditions Freedom degree of regulation Challenge Personal responsibility Source: acatech, Milberg 2007

25 Agenda Introduction 1 Fields of Action in Energy- and Ressource-Efficient Manufacturing 2 Balancing 3 Adapted Process-Design leading to Resource- and Energy-Savings 4 Summary 5


Download ppt "Energy Efficiency in Manufacturing"

Similar presentations


Ads by Google