Presentation is loading. Please wait.

Presentation is loading. Please wait.

IQC 2011-10-17 Lev S Bishop Strong driving in Circuit QED TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A AAAA A A.

Similar presentations


Presentation on theme: "IQC 2011-10-17 Lev S Bishop Strong driving in Circuit QED TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A AAAA A A."— Presentation transcript:

1 IQC 2011-10-17 Lev S Bishop Strong driving in Circuit QED TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A AAAA A A A Collaborators: Theory: Eran Ginossar (Surrey) Erkki Thuneberg (Oulu) Jens Koch (Northwestern) Steve Girvin (Yale) Funding: Experiment: Jerry Chow (IBM) Andrew Houck (Princeton) Matt Reed (Yale) Leo DiCarlo (Delft) Dave Schuster (Chicago) Rob Schoelkopf (Yale) … Joint Quantum Institute and Condensed Matter Theory Center, University of Maryland

2 Outline Background –Circuit QED, approximations, Jaynes-Cummings Resonant strong coupling regime (quantum oscillator) –Photon Blockade, multiphoton transitions, supersplitting Strong-dispersive regime (semiclassical oscillator) –Special kind of bifurcation with 2 critical points –readout Intermediate regime –Quantum control and readout Conclusions and future directions

3 Jaynes-Cummings Physics Qubit=atom=transmon Cavity=resonator coupling (two-level approx.: Rabi) (RWA: Jaynes-Cummings) Open-system (drive & dissipation) is where it gets interesting

4 These circuits are designed for quantum computing DiCarlo et al., Nature 460, 240-244, (2009) Real part of 2- qubit density matrix Measured (not theory) 85% algorithm fidelity

5 From cavity QED to circuit QED Strong coupling, strongly dispersive regimes: easy with circuit QED Atom spatially fixed, no field inhomogeneity effects, etc Drive strength easily tunable over a wide power range Atom frequency can be tuned quickly

6 Quantum optics with circuits… Probing photon states via ‘number splitting’ effect ! Transmon as a detector for photon states J. Gambetta et al., PRA 74, 042318 (2006) D. Schuster et al., Nature 445, 515 (2007) Single microwave photons ‘on demand’ ! Transmon as a microwave photon emitter A. A. Houck et al., Nature 449, 328 (2007)

7 …More quantum optics with circuits Generation of Fock states and measurement of subsequent decay ! Phase qubit used to climb the Fock state ladder one rung at a time H. Wang et al., PRL 101, 240401 (2008) Generation of arbitrary states of a resonator M. Hofheinz et al. Nature 454, 310 (2008) And more…

8 Outline Background –Circuit QED, approximations, Jaynes-Cummings Resonant strong coupling regime (quantum oscillator) –Photon Blockade, multiphoton transitions, supersplitting Strong-dispersive regime (semiclassical oscillator) –Special kind of bifurcation with 2 critical points –readout Intermediate regime –Quantum control and readout Conclusions and future directions

9 A. Wallraff et al., Nature 431, 162 (2004) Strong coupling: Vacuum Rabi Splitting Signature for strong coupling Placing a single resonant atom inside the cavity leads to a splitting of the cavity transmission peak Vacuum Rabi Splitting Observed in: Cavity QED: R. J. Thompson et al, Phys. Rev. Lett 68, 1132 (1992) Circuit QED: A. Wallraff et al., Nature 431, 162 (2004) Quantum dot systems: J.P. Reithmaier et al., Nature 432, 197 (2004) T. Yoshie et al., Nature 432, 200 (2004) 2008

10 Vacuum Rabi splitting: Linear Response Jaynes-Cummings model Lorentzian lineshape Separation: Linewidth: Circuit QED is ideally suited to go beyond linear response Increase of microwave power is simple Atom is spatially fixed Question: heterodyne transmission beyond linear response?

11 ‘Supersplitting’ and  n peaks Two main results: 1) Supersplitting of each vacuum Rabi peak Simple 2-level model based on ‘dressing of dressed states’ (H. J. Carmichael) 2) Emergence of  n peaks Probing higher levels in the Jaynes- Cummings ladder (  n anharmonicity) Here: up to n=6 Related work on  n anharmonicity: I. Schuster et al., Nature Physics 4, 382 (2008) J. M. Fink et al., Nature 454, 315 (2008) M. Hofheinz et al., Nature 459, 546 (2009)

12 Extended Jaynes-Cummings Ladder J-C Hamiltonian extended to include higher transmon levels:

13 Supersplitting: 2-level model Restriction to 2-level subspace: ‘Dressing of dressed states’ Measure heterodyne amplitude: (Not a y a as in photon counting) Steady state solution of Bloch equations: (T 1, T 2 get renormalized)

14 Full model Extended Jaynes-Cummings Hamiltonian with drive: Include dissipation via Master equation Measure heterodyne transmission amplitude, not

15

16

17

18

19

20

21

22

23 Outline Background –Circuit QED, approximations, Jaynes-Cummings Resonant strong coupling regime (quantum oscillator) –Photon Blockade, multiphoton transitions, supersplitting Strong-dispersive regime (semiclassical oscillator) –Special kind of bifurcation with 2 critical points –readout Intermediate regime –Quantum control and readout Conclusions and future directions LSB, Ginossar, Girvin PRL 105, 100505 (2010) Boissonneault, Gambetta, Blais PRL 105, 100504 (2010) Reed et al PRL 105, 173601 (2010)

24 Strong-dispersive regime Cavity-pull  =g 2 / ± many linewidths, though g/ ± À 1 D I Schuster et al Nature 445, 515

25 A strange dataset Four transmons Very strong driving (10,000 photons if linear response) Strong-dispersive bad-cavity regime MD Reed et al. PRL 105, 173601 (2010)

26 Essential mechanism Diminishing anharmonicity of the Hamiltonian ~!c~!c

27 Undriven Hamiltonian JC Hamiltonian Exact Diagonalization detuningtotal excitationscritical photon number HUGE simplification: seems unlikely to be useful but let’s try anyway

28 Perturbative expansion Dispersive approximation Plus Kerr term… Can continue the expansion, but only converges for Expand in For typical cQED parameters, the dispersive approximation breaks down before N=N crit : anharmonicity ® =2g 4 / ± 3 is approx. linewidth g=200MHz, ± =1 GHz, ® =3.2MHz

29 Transition frequencies ! c - ! ij g/ ± =0.1 |1 i |0 i Transition frequency n

30 Transformed drive & dissipation Matrix elements of a do not change, O(n -1/2 )*O(g/ ± ) Elements of ¾ z, ¾ § do change, cf “dressed dephasing” Boissonneault et al, PRA 79, 013819 (2009), PRA 77, 060305(R) (2008) Take ‘bad cavity limit’ · À °, look at timescales short compared to the qubit relaxation t ¿ 1/ ° (‘freeze the qubit’) Remaining degree of freedom is the JC oscillator g/ ± =0.1

31 Master equation Heterodyne amplitude: | h a i | Effective parameters are chosen to be representative, not fitted Integrate to t=2.5/ · using quantum trajectories -RWA in the drive -Truncate at 10,000 Fock states (up to ~1 cpu week/pixel) -Inefficient, can be improved -(NB Transient: Steady-state quantitatively different) experimenttheory

32 Transient (via trajectories) t=2.5/ ·

33 Steady state (via solution of M.E.) t= 1

34 Why does JC model work? Several reasons to be surprised! Multiple transmons Higher transmon levels (>10 occupied) Breakdown of RWA going from Rabi to JC Hamiltonian Answer: Still exhibits return to bare frequency JC Rabi

35 Semiclassical JC Oscillator Quantum model works nicely, but want to simplify further In limit of anharmonicity ¿ linewidth. –final part of my talk is about opposite limit Rewrite Hamiltonian in terms of canonical variables gives cf Peano & Thorwart, EPL 89,17008 (2010)

36 Semiclassical potential Perturbation to quadratic potential looks like |X| for large X X Sqrt(1+N/N crit )

37 Semiclassical equation Self-consistent equations for the amplitude A 2 =X 2 +P 2 Treat A as constant (ignore harmonic generation, chaos)

38 Semiclassical results Region of bistability Like a phase diagram with 2 critical points (careful, no Maxwell construction, etc) Dip is in classically bistable region Readout protocol operates close to upper critical point

39 Frequency response Dip is from noise-driven switching between semiclassically allowed states Analytic solution (hypergeometric functions) for the case of a Kerr oscillator - Including dip and even multiphoton peaks!

40 Switching Slow timescale À cavity lifetime Initialize in g.s., takes a long time for dip to move to the left

41 Lots of gain near C 2 Log scale Linear scale

42 How to use this for qubit readout? Not for one-qubit case, because of symmetry |1 i |0 i |1 i |0 i Input power/dB Trans. power/dB (there is still information in the phase) Neglect for large N

43 Symmetry breaking Pure 2-level qubit has (almost) symmetry Two qubits, one ‘active’ one ‘spectator’ One transmon

44 Comparison to JBA/Kerr Oscillator Uses nonlinearity of qubit, not additional element Non-latching mode of operation –JBA could do this also: similar gain at C 1 and C 2 C 2 easy to find, brighter Frequency of C 2 ‘independent’ of qubit state Chaos? cf Mallet, F. Ong, et al Nature Physics 5 (2009) 791

45 Other single-atom bistabilities Absorptive bistability –V. different regime: weak coupling, good cavity –Maxwell-Bloch (keeps qubit dynamics) Spontaneous dressed-state polarization/single-atom phase stability –Strong coupling, bad cavity –But: qubit & cavity on resonance –Drive above ‘ » 2 ’

46 Conclusions JC oscillator is appropriate qualitative model for the readout –Surprising: return to bare frequency is the important thing Beyond dispersive approximation Beyond Kerr nonlinearity Beyond perturbation expansion A new kind of nonlinear oscillator(?) Lots of gain at C 2 Special kind of symmetry breaking ( » 2 depends on transmon state(s), but not   ) –Is very helpful for readout

47 Outline Background –Circuit QED, approximations, Jaynes-Cummings Resonant strong coupling regime (quantum oscillator) –Photon Blockade, multiphoton transitions, supersplitting Strong-dispersive regime (semiclassical oscillator) –Special kind of bifurcation with 2 critical points –readout Intermediate regime –Quantum control and readout Conclusions and future directions Ginossar, LSB, Schuster, Girvin. Phys. Rev. A 82, 022335 (2010)

48 Quasi-harmonic long lived states Coherent state with average occupation obeying approximately Total frequency shift from “end-to- end” due to anharmonicity should be smaller than the linewidth. find quasi-harmonic states, co- existing with photon-blockaded states (for same parameters and drive).  Quantum states coexisting with semiclassical states (bistability) Photon blockade Neither small Hilbert space nor point in classical phase-space

49 Quantum trajectory simulations of quasi-coherent states

50 Coexistence of blockaded and long lived quasi-coherent states Lifetime is large on the scale of the cavity lifetime Should be obtainable experimentally for typical circuit QED parameters Probability for decay afterQuasi-coherent states lifetimes Cavity drive strength [GHz]

51 High fidelity readout : a dynamical mapping Idea: use co-existence of bright (quasi-harmonic) and dim (photon blockade) states to readout qubit. Selective state transfer problem in quantum coherent control

52 High fidelity readout : Coherent control 1)An initial strong pulse excites the cavity-qubit system selectively (quasi-dispersive regime) 2) A weak long pulse displaces the quasi-coherent state and does not affect the blockaded state, thus generating the readout contrast. Optimization of a linear chirp readout protocol in the bistable regime

53 Initial chirp: achieving selectivity via coherent oscillation Chirping in the quasi-dispersive regime can be thought of as oscillator ringing

54 Cumulative probability distributions (s-curves) Very high fidelities for a low photon threshold, trades off with contrast Very Robust against variations of the system and control parameters

55 Summary and outlook New type of bistability in the JC ladder between photon blockaded states and quasi-coherent metastable states. See also DiVincenzo and Smolin arXiv:1109.2490 (2011). We demonstrated an efficient coherent control protocol for high fidelity (98%) readout, with full quantum mechanical simulation including the decay processes. A simple architecture: apply a different readout protocol -No additional parts necessary on the circuit except the qubit and cavity. Open questions: Theory for the timescales for switching between the bistable states? Apply optimal control Consider multi-qubit readout? Effect of additional levels of realistic (e.g. Transmon) systems.

56 Overall conclusions Extreme parameters of circuit QED (compared to other cavity QED implementations) allow observation of interesting quantum optics effects in different regimes These can be useful for qubit readout Some other strong driving effects (many others): –Autler-Townes, Mollow triplet (Baur et al Phys. Rev. Lett. 102, 243602 (2009)), (Li et al Phys. Rev. B 84, 104527 (2011)) –Photon blockade (Hoffman et al Phys. Rev. Lett. 107, 053602 (2011)) Quantum control –For gates, eg DRAG and GRAPE (Motzoi et al Phys. Rev. Lett. 103, 110501 (2009)) –For readout, eg chirped driving/autoresonance (Naaman et al PRL 101,117005 (2008) Better qubits, fancier architectures (multiple cavities), additional nonlinear elements, etc, etc Some inspiration from other cavity QED implementations, some unique to circuits. See forthcoming “Fluctuating nonlinear oscillators” M. Dykman (ed), OUP (2011). Thank you!


Download ppt "IQC 2011-10-17 Lev S Bishop Strong driving in Circuit QED TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A AAAA A A."

Similar presentations


Ads by Google