Presentation is loading. Please wait.

Presentation is loading. Please wait.

Transport Layer1 Reliable Transfer Ram Dantu (compiled from various text books)

Similar presentations


Presentation on theme: "Transport Layer1 Reliable Transfer Ram Dantu (compiled from various text books)"— Presentation transcript:

1 Transport Layer1 Reliable Transfer Ram Dantu (compiled from various text books)

2 Transport Layer2 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection m MSS: maximum segment size r connection-oriented: m handshaking (exchange of control msgs) init’s sender, receiver state before data exchange r flow controlled: m sender will not overwhelm receiver r point-to-point: m one sender, one receiver r reliable, in-order byte steam: m no “message boundaries” r pipelined: m TCP congestion and flow control set window size r send & receive buffers

3 Transport Layer3 TCP segment structure source port # dest port # 32 bits application data (variable length) sequence number acknowledgement number Receive window Urg data pnter checksum F SR PAU head len not used Options (variable length) URG: urgent data (generally not used) ACK: ACK # valid PSH: push data now (generally not used) RST, SYN, FIN: connection estab (setup, teardown commands) # bytes rcvr willing to accept counting by bytes of data (not segments!) Internet checksum (as in UDP)

4 Transport Layer4 TCP seq. #’s and ACKs Seq. #’s: m byte stream “number” of first byte in segment’s data ACKs: m seq # of next byte expected from other side m cumulative ACK Q: how receiver handles out-of-order segments m A: TCP spec doesn’t say, - up to implementor Host A Host B Seq=42, ACK=79, data = ‘C’ Seq=79, ACK=43, data = ‘C’ Seq=43, ACK=80 User types ‘C’ host ACKs receipt of echoed ‘C’ host ACKs receipt of ‘C’, echoes back ‘C’ time simple telnet scenario

5 Transport Layer5

6 6

7 7 Performance example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet: T transmit = 8kb/pkt 10**9 b/sec = 8 microsec m U sender : utilization – fraction of time sender busy sending m 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link m network protocol limits use of physical resources! L (packet length in bits) R (transmission rate, bps) =

8 Transport Layer8 stop-and-wait operation first packet bit transmitted, t = 0 senderreceiver RTT last packet bit transmitted, t = L / R first packet bit arrives last packet bit arrives, send ACK ACK arrives, send next packet, t = RTT + L / R

9 Transport Layer9 Pipelined protocols Pipelining: sender allows multiple, “in-flight”, yet-to- be-acknowledged pkts m range of sequence numbers must be increased m buffering at sender and/or receiver r Two generic forms of pipelined protocols: go-Back-N, selective repeat

10 Transport Layer10 Pipelining: increased utilization first packet bit transmitted, t = 0 senderreceiver RTT last bit transmitted, t = L / R first packet bit arrives last packet bit arrives, send ACK ACK arrives, send next packet, t = RTT + L / R last bit of 2 nd packet arrives, send ACK last bit of 3 rd packet arrives, send ACK Increase utilization by a factor of 3!

11 Transport Layer11 TCP Round Trip Time and Timeout Q: how to set TCP timeout value? r longer than RTT m but RTT varies r too short: premature timeout m unnecessary retransmissions r too long: slow reaction to segment loss Q: how to estimate RTT?  SampleRTT : measured time from segment transmission until ACK receipt m ignore retransmissions  SampleRTT will vary, want estimated RTT “smoother”  average several recent measurements, not just current SampleRTT

12 Transport Layer12 TCP Round Trip Time and Timeout EstimatedRTT = (1-  )*EstimatedRTT +  *SampleRTT r Exponential weighted moving average r influence of past sample decreases exponentially fast  typical value:  = 0.125

13 Transport Layer13 Example RTT estimation:

14 Transport Layer14 TCP Round Trip Time and Timeout Setting the timeout  EstimtedRTT plus “safety margin”  large variation in EstimatedRTT -> larger safety margin r first estimate of how much SampleRTT deviates from EstimatedRTT: TimeoutInterval = EstimatedRTT + 4*DevRTT DevRTT = (1-  )*DevRTT +  *|SampleRTT-EstimatedRTT| (typically,  = 0.25) Then set timeout interval:

15 Transport Layer15 TCP reliable data transfer r TCP creates rdt service on top of IP’s unreliable service r Pipelined segments r Cumulative acks r TCP uses single retransmission timer r Retransmissions are triggered by: m timeout events m duplicate acks r Initially consider simplified TCP sender: m ignore duplicate acks m ignore flow control, congestion control

16 Transport Layer16 TCP sender events: data rcvd from app: r Create segment with seq # r seq # is byte-stream number of first data byte in segment r start timer if not already running (think of timer as for oldest unacked segment)  expiration interval: TimeOutInterval timeout: r retransmit segment that caused timeout r restart timer Ack rcvd: r If acknowledges previously unacked segments m update what is known to be acked m start timer if there are outstanding segments

17 Transport Layer17 TCP sender (simplified) NextSeqNum = InitialSeqNum SendBase = InitialSeqNum loop (forever) { switch(event) event: data received from application above create TCP segment with sequence number NextSeqNum if (timer currently not running) start timer pass segment to IP NextSeqNum = NextSeqNum + length(data) event: timer timeout retransmit not-yet-acknowledged segment with smallest sequence number start timer event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer } } /* end of loop forever */ Comment: SendBase-1: last cumulatively ack’ed byte Example: SendBase-1 = 71; y= 73, so the rcvr wants 73+ ; y > SendBase, so that new data is acked

18 Transport Layer18 TCP: retransmission scenarios Host A Seq=100, 20 bytes data ACK=100 time premature timeout Host B Seq=92, 8 bytes data ACK=120 Seq=92, 8 bytes data Seq=92 timeout ACK=120 Host A Seq=92, 8 bytes data ACK=100 loss timeout lost ACK scenario Host B X Seq=92, 8 bytes data ACK=100 time Seq=92 timeout SendBase = 100 SendBase = 120 SendBase = 120 Sendbase = 100

19 Transport Layer19 TCP retransmission scenarios (more) Host A Seq=92, 8 bytes data ACK=100 loss timeout Cumulative ACK scenario Host B X Seq=100, 20 bytes data ACK=120 time SendBase = 120

20 Transport Layer20 TCP ACK generation [RFC 1122, RFC 2581] Event at Receiver Arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed Arrival of in-order segment with expected seq #. One other segment has ACK pending Arrival of out-of-order segment higher-than-expect seq. #. Gap detected Arrival of segment that partially or completely fills gap TCP Receiver action Delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK Immediately send single cumulative ACK, ACKing both in-order segments Immediately send duplicate ACK, indicating seq. # of next expected byte Immediate send ACK, provided that segment startsat lower end of gap


Download ppt "Transport Layer1 Reliable Transfer Ram Dantu (compiled from various text books)"

Similar presentations


Ads by Google