Download presentation

Presentation is loading. Please wait.

Published byStephanie Sawyer Modified over 3 years ago

1
Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, s.luding@tnw.tudelft.nl Shear banding in granular materials Stefan Luding PART/DCT, TUDelft, NL Thanks to: M. Lätzel, M.-K. Müller (Stuttgart), R. P. Behringer, J. Geng, D. Howell (Duke), M. van Hecke, D. Fenistein (Leiden)

2
Introduction Results DEM Micro-Macro (global) Micro-Macro (local) Outlook - Anisotropy - Rotations Single particle Contacts Many particle simulation Continuum Theory Contents

3
Single particle Contacts Many particle simulation Continuum Theory Contents E x p e r i m e n t s Introduction Results DEM Micro-Macro (global) Micro-Macro (local) Outlook - Anisotropy - Rotations

4
Material behavior of granular media Non-Newtonian Flow behavior under slow shear inhomogeneityrotations Yield-surface Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, s.luding@tnw.tudelft.nl

5
Material behavior of granular media 3D 3-dimensional modeling of shear and sound propagation Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, s.luding@tnw.tudelft.nl P-wave shape and speed Universal shear zones

6
Sound propagation in granular media 3-dimensional modeling of sound propagation Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, s.luding@tnw.tudelft.nl P-wave shape and speed

7
Applications Granular media (powder, sand, …) Colloidal systems (+fluid) Atomistic systems in confined geometries Many particle systems (traffic, pedestrians) Industrial scale applications ?

8
Why ? `Many particle simulations work for small systems only (10 4 - 10 6 ) Industrial scale applications rely on FEM FEM relies on continuum mechanics + constitutive relations `Micro-macro can provide those ! Homogenization/Averaging

9
Introduction Results DEM Contacts Many particle simulation Contents

10
Equations of motion Overlap Forces and torques: Normal Contacts Many particle simulation Discrete particle model

11
Contact force measurement (PIA)

12
Hysteresis (plastic deformation)

13
- (too) simple - piecewise linear - easy to implement Contact model

14
- (really too) simple - linear - very easy to implement Linear Contact model

15
- simple - non-linear - easy to implement Hertz Contact model

16
Sound Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, s.luding@tnw.tudelft.nl

17
Sound 3-dimensional modeling of sound propagation Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, s.luding@tnw.tudelft.nl P-wave shape and speed

18
potential energyrotationsdisplacements Micro simulation of shear bands

19
Strain Control (top): Initial position and final position z 0 and z f Stress-control (right): With wall mass: m x, friction x and (i)Bulk material force F x (t) (ii)External force –p x z(t), and (iii)Frictional force x x(t) Model system bi-axial box

20
zz =9.1% zz =4.2% zz =1.1% zz =0.0% Simulation results

21
Bi-axial box

23
Introduction Results DEM Micro-macro (global) Contacts Many particle simulation Continuum Theory Contents

24
Bi-axial compression with p x =const.

25
geometrical friction angle kc/k20½124kc/k20½124 p x 100 zz 183 234 264 310 336 p x 500 zz 798 853 915 941 972 c 11 32 40 60 71 f min macro cohesion Cohesion – no friction

26
Sliding contact points: - Static Coulomb friction - Dynamic Coulomb friction Tangential contact model

27
- Static friction - Dynamic friction project into tangential plane compute test force sticking: sliding: Tangential contact model - spring - dashpot before contact static dynamic static

28
k c = 0 and µ = 0.5 Internal friction angle Total friction angle Friction – no cohesion

29
Bi-axial box rotations

30
Direction, amplitude, anti-symmetric (!) stress Rotations (local)

31
Rolling (mimic roughness or steady contact necks) - Static rolling resistance - Dynamic resistance Tangential contact model

32
Silo Flow with friction +rolling friction

33
Silo Flow with friction

34
Tangential contact model Torsion (large contact area) - Static torsion resistance - Dynamic resistance

35
DEM simulation macroscopic material behaviour Micro: Disks (in 2-D) Particle size a = [0.5 : 1.5] mm Stiffness k 2 = 10 5 Nm -1 and k 1 =k 2 /2 Cohesion k c = 0, ½, 1, 2, 4 k 2 Friction µ = 0 Macro: Youngs Modulus E k 1 Poisson ratio 0.66 Friction angle 13° (µ=0) and 31° (µ=0.5) Dilatancy angle 5° (p=500) and 11° (p=100) Cohesion: + Bi-axial box setup Summary: micro-macro (global)

36
An-isotropy

37
Stiffness tensor vertical horizontal shear anisotropy

38
An-isotropy Structure changes with deformation Different stiffness: More stiff against shear Less stiff perpendicular Evolution with time:

39
Stiffness tensor vertical horizontal shear shear1 shear2 shear3

40
From virtual work … For each single contact … Þ Stress tensor Þ Stiffness matrix C (elastic) - Normal contacts - Tangential springs Deformations (2D): - Isotropic compression V - Deviatoric strain (=shear) D, Þ Stress changes - Isotropic V - Deviatoric D, Local micro-macro transition

41
Constitutive model with rotations

42
+ successful tool – few parameters - microscopic foundations ? - extensions & parameter identification Continuum Theory deformation - rotations cyclic deformations - creep Hypoplastic FEM model

43
density vs. pressure & friction vs. density Micro-macro transition

44
Granular media are: - compressible - inhomogeneous (force-chains) - (almost always) an-isotropic and - micro-polar (rotations) Summary – part 1: global view

45
Introduction Results Micro-macro (global) Micro-macro (local) Single particle Contacts Many particle simulation Continuum Theory Contents

46
Global average vs. Local average Global + Experimentally accessible data - Wall effects - Averaging over inhomogeneities Local - Difficult to compare to experiment + Averages away from the walls + Average over `similar volume elements

47
potential energyrotationsdisplacements Micro informations: shear bands

48
Direction, amplitude, anti-symmetric (!) stress Rotations (local)

49
Ring geometry (Behringer et al.)

50
Ring geometry

51
2D shear cell – energy

52
2D shear cell – force chains

53
2D shear cell – shear band

54
Ring geometry

56
Averaging Formalism Any quantity: In averaging volume:

57
Averaging Formalism Any quantity: - Scalar - Vector - Tensor

58
Averaging Density Any quantity: - Scalar: Density/volume fraction

59
Density profile Global volume fraction

60
Any quantity: - Scalar - Vector – velocity density Averaging Velocity

61
Velocity field exponential

62
Velocity gradient exponential:

63
Velocity gradient exponential:

64
Velocity distribution

65
Averaging Fabric Any quantity: - Scalar: contacts - Vector: normal - Contact distribution

66
Fabric tensor contact probability … centerwall

67
Fabric tensor (trace) contact number density

68
Macro (contact density)

69
Fabric tensor (deviator) an-isotropy (!)

70
Averaging Stress Any quantity: - Scalar - Vector - Tensor: Stress

71
Stress tensor (static) shear stress

72
Stress tensor (dynamic) exponential

73
Stress equilibrium (1) acceleration:

74
Stress equilibrium (2) ? ?

75
Averaging Deformations Deformation: - Scalar - Vector - Tensor: Deformation

76
Macro (bulk modulus)

77
Macro (shear modulus)

78
Constitutive model – no rotations

79
Averaging Rotations Deformation: - Scalar - Vector: Spin density - Tensor

80
Rotations – spin density eigen-rotation:

81
Spin distribution

82
Velocity-spin distribution high dens.low dens. sim. exp.

83
Macro (torque stiffness)

84
Deformations (2D): - Isotropic V - Deviatoric (=shear) D, - Mean rotation (=slip) * - Difference rot. (=rolling) ** Þ Stress changes ??? - Isotropic V - Deviatoric D, - Asymmetric A An-isotropy and rotations

85
Constitutive model with rotations

86
Granular media are: - compressible - inhomogeneous (force-chains) - (almost always) an-isotropic - micro-polar (rotations) Summary Granular media are … … interesting

87
Open issues Accounting for inhomogeneities (temperature) Structure evolution with deformation (time) Micropolar continuum theory …

88
The End

90
Contact force measurement (PIA)

91
Hysteresis (plastic deformation)

92
- (too) simple - piecewise linear - easy to implement Contact model

93
- (really too) simple - linear - very easy to implement Linear Contact model

94
- simple - non-linear - easy to implement Hertz Contact model

95
Sound Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, s.luding@tnw.tudelft.nl

96
Sound 3-dimensional modeling of sound propagation Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft Stefan Luding, s.luding@tnw.tudelft.nl P-wave shape and speed

97
Sliding contact points: - Static Coulomb friction - Dynamic Coulomb friction Tangential contact model

98
- Static friction - Dynamic friction project into tangential plane compute test force sticking: sliding: Tangential contact model - spring - dashpot before contact static dynamic static

99
Bi-axial box rotations

100
Direction, amplitude, anti-symmetric (!) stress Rotations (local)

101
Rolling (mimic roughness or steady contact necks) - Static rolling resistance - Dynamic resistance Tangential contact model

102
Silo Flow with friction +rolling friction

103
Silo Flow with friction

104
Tangential contact model Torsion (large contact area) - Static torsion resistance - Dynamic resistance

106
+ successful tool – few parameters - microscopic foundations ? - extensions & parameter identification Continuum Theory deformation - rotations cyclic deformations - creep Hypoplastic FEM model

107
density vs. pressure & friction vs. density Micro-macro transition

108
From virtual work … For each single contact … Þ Stress tensor Þ Stiffness matrix C (elastic) - Normal contacts - Tangential springs Deformations (2D): - Isotropic compression V - Deviatoric strain (=shear) D, Þ Stress changes - Isotropic V - Deviatoric D, Local micro-macro transition

111
page with logo

Similar presentations

OK

Granular flows under the shear Hisao Hayakawa* & Kuniyasu Saitoh Dept. Phys. Kyoto Univ., JAPAN *

Granular flows under the shear Hisao Hayakawa* & Kuniyasu Saitoh Dept. Phys. Kyoto Univ., JAPAN *

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on forward contract definition Ppt on project proposal writing Ppt on nitrogen cycle and nitrogen fixation equation Ppt on varactor diode equation Ppt on phonetic transcription symbols Ppt on study and manufacturing of turbo generator Converter pub to ppt online templates Download ppt on history and sport the story of cricket Ppt on team management skills Ppt on conceptual artist