Download presentation

Presentation is loading. Please wait.

Published bySophia Byrd Modified over 8 years ago

1
Definition of the Derivative Using Average Rate () a a+h f(a) Slope of the line = h f(a+h) Average Rate of Change = f(a+h) – f(a) h f(a+h) – f(a) h

2
a+h h a h a a h Now, Watch what happens when: Point a is fixed and the size of the interval h shrinks a+h h a

3
As h shrinks and approaches zero (but not = 0), Slope of the Tangent line = f(a+h) – f(a) h h f(a+h) f(a) a+ha Slope of the line = Average Rate of Change = f(a+h) – f(a) h the line becomes a Tangent Line As h approaches zero

4
f(a) a lim: Limit, as h approaches zero f(a+h) – f(a) h = lim h 0 Slope of the Tangent line As h approaches zero, or: f(a+h) – f(a) h = The slope of the Tangent Line at a is the Derivative, f ' (a) f(a+h) – f(a) h lim h 0 f ' (a) =

5
Example: Use the definition of the derivative to obtain the following result: If f(x) = -2x + 3, then f ' (x) = -2 Solution: Using the definition f (x + h) = -2(x + h) + 3= (-2x - 2h + 3) = -2 f(x+h) – f(x) h f ' (x) = lim h 0 = (-2h) h lim h 0 = (-2x - 2h + 3) – ( -2x + 3) h lim h 0 f (x + h) – f (x) h f ' (x) = lim h 0

6
Example: Use the definition of the derivative to obtain the following result: If f(x) = x 2 - 8x + 9, then f ' (x) = 2x - 8 f (x + h) = (x + h) 2 - 8(x + h) + 9= (x 2 + 2xh + h 2 - 8x -8h + 9) = 2x - 8 f(x+h) – f(x) h f ' (x) = lim h 0 = (2x + h - 8) lim h 0 = h (2x + h - 8) h lim h 0 = (2xh + h 2 - 8h) h lim h 0 = (x 2 + 2xh + h 2 - 8x - 8h + 9) – ( x 2 - 8x + 9) h lim h 0 f (x + h) – f (x) h f ' (x) = lim h 0 Solution: Using the definition

Similar presentations

© 2022 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google