Download presentation

Presentation is loading. Please wait.

Published byDiego Coughlin Modified over 3 years ago

1

2
Quadratic Equations,

3
Solving a Quadratic Equation by factorization by graphical method by taking square roots by quadratic equation

4
By taking square roots

5
In this form we could have the case where b = 0. Remember standard form for a quadratic equation is: When this is the case, we get the x 2 alone and then square root both sides. Get x 2 alone by adding 6 to both sides and then dividing both sides by Now take the square root of both sides remembering that you must consider both the positive and negative root. Let's check: Now take the square root of both sides remembering that you must consider both the positive and negative root.

6
By taking square roots A quadratic equation must contain two roots. ?

7
By taking square roots

8

9
No solution, x² cannot be negative

10
Exercise 9F Page 298

11
What if in standard form, c = 0? We could factor by pulling an x out of each term. Factor out the common x Use the Null Factor law and set each factor = 0 and solve. If you put either of these values in for x in the original equation you can see it makes a true statement.

12

13
By factorization roots (solutions)

14
A quadratic equation is an equation equivalent to one of the form Where a, b, and c are real numbers and a 0 To solve a quadratic equation we get it in the form above and see if it will factor. Get form above by subtracting 5x and adding 6 to both sides to get 0 on right side. -5x + 6 Factor. Use the Null Factor law and set each factor = 0 and solve. So if we have an equation in x and the highest power is 2, it is quadratic.

15
What are we going to do if we have non-zero values for a, b and c but can't factor the left hand side? This will not factor so we will complete the square and apply the square root method. First get the constant term on the other side by subtracting 3 from both sides. Let's add 9. Right now we'll see that it works and then we'll look at how to find it. 99

16
Now factor the left hand side. two identical factors This can be written as: Now we'll get rid of the square by square rooting both sides. Remember you need both the positive and negative root! Subtract 3 from both sides to get x alone. These are the answers in exact form. We can put them in a calculator to get two approximate answers.

17
Page 300

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google