Presentation is loading. Please wait.

Presentation is loading. Please wait.

Characterizing Future Climate – Information Needs.

Similar presentations

Presentation on theme: "Characterizing Future Climate – Information Needs."— Presentation transcript:


2 Characterizing Future Climate – Information Needs



5 Quantify the relationship between increases in atmospheric greenhouse gases and regional impacts. Understand how changes in the global ocean circulation affect the climate system and regional impacts Advance understanding of the Earth System to provide an improved basis for confidence in understanding key oceanic, atmospheric, and components of the climate system and impacts. New precipitation frequency estimates through the examination and improved understanding of potential variations in the estimates Improved representation of the exchange processes impacting wind-driven circulation and temperature and moisture regimes. Projected low-frequency variability in precipitation and extreme events Role of changes in external forcings and feedbacks in the modulation of high-impact regional climate conditions and extremes Understanding of basic climate processes, such MJO, monsoons, air-sea- land interactions, seasonal variations, ENSO, and multiyear to decade ocean conditions.

6 Characterizing Future Climate – Information Needs Account for the influences of natural variability and anthropogenic forcing on hydrologic conditions and other water resource environmental factors Justification for excluding some model output, or for applying weighting factors to account for the different models’ skill in simulating past regional climate. Application of paleohydrologic data to water resource planning by assessing drought vulnerability in management plans. Methods to incorporate both historic and paleoclimate variability and extremes into projections and scenarios of future climate. Projected longer-term variability relative to variability in historical observations and paleoclimate proxies Assess the value of blended of paleoclimate and projected climate information, hydrologic frequency analysis under changing climate conditions Using predictions and projections in making decisions under uncertainty.

7 Characterizing Future Climate – Information Needs Next generation of precipitation frequency estimates and updated estimates of trends in frequency and duration. Estimates of Probable Maximum Precipitation in a changing climate Diagnosis and analysis of spatial and temporal trends of extreme precipitation to improve predictions Forecasts of water resources and associated estimates of precipitation, evaporation, and runoff at the scale of large watersheds across climate time scales. Evaluation of the portfolio of approaches to translated GCM output from coarse global scales to a finer regional resolutions and temporally disaggregated. Next generation of downscaled model output of changes in all aspects of the hydrologic system, including Supplement available regional downscaled climate projections with additional hydrologic variables Quantify the merits of downscaled data through inter-comparison of climate model numerical methods.

8 Characterizing Future Climate – Information Needs Characterization of uncertainty in regional climate projections. Rigorous community-wide inter-comparison of climate model simulation methods,. Quantify how simulated climate varies both spatially and temporally from observed climate, whether certain climate variables are more Assessment- and forecast-modeling tools for sea-level rise to address changing conditions and vulnerabilities due to storms and sea-level rise. Scientific understanding to anticipate impacts on managed resources and vulnerable communities, and identify relevant management thresholds Assessments of the likelihood of coastal impacts, such as the frequency of inundation, erosion and land loss Vulnerability of coral and carbonate systems to changing ocean chemistry Alternative “rapid ice-melt approaches” in predicting and projecting changes in sea-level rise.

9 Characterizing Future Climate – Information Needs Characterization of risk in the context of multiple uncertainties. Characterization of the value of supplementing a model-based probability approach with techniques that consider the past performance of the individual GCMs Methodologies to use large ensembles of hydro-relevant regional-climate model projections to best explore and characterize the sensitivities and uncertainties across regions. Downscaled projections with hydroclimatic models and other methods that can resolve the mountain/valley landscape Estimations of uncertainty in model projections at the regional scale Evaluation and guidance on methods for using spatial weather generators to downscale regional climate forecasts.

10 Assess Natural Systems Response – Hydrology Gaps

11 Watershed hydrologic models/methods intercomparison to help reconcile differences among apparent disparate research findings. Assess whether the instrumentation and observing networks are adequate to monitor ET and evaluate predictions of water demand in response to changes in potential ET. Evaluation of the fidelity of climate model forecasts and projections to represent the full complement of surface water/energy budget variables Can weather/climate/atmospheric model calculated variables be effectively downscaled and/or bias corrected. Assessments of the best possible biophysical representation of potential and actual ET in hydrologic models Assessment of the scientific basis for estimating extreme event (flood or drought) probability distributions. Improved methods of flood frequency analysis making better use of historical and paleo-flood and paleodrought information

12 Assess Natural Systems Response – Hydrology Gaps Enhanced representation of land-atmosphere interactions in general circulation models and in regional climate models. Coupled surface water and ground water hydrologic modeling to assess climate change impacts on surface and ground water interactions Long-term monitoring programs to provide data to inform the development of ecosystem models and integrated ecosystem assessments.

13 Assess Natural Systems Response – Ecosystem Gaps

14 Integration of climate, oceanographic, biological, and ecological modeling and assessment to quantify the effects of multiple factors affecting anadromous fish populations. Quantifying the consequences of various management scenarios including control of nonnative species, passage, channel, and habitat modification, stocking practices, flow regulation, and land and water use management. Riparian ecosystem research as it relates to anadromous fish population health using field and satellite applications Riparian ecosystems modeling to assess climate sensitivity. Integrated ecosystems assessments which incorporate projected impacts of climate change from earth systems modeling scaled to the local scale Laboratory and field research to better define ecosystem functions, phenology, and interactions of riparian vegetation. Modeling schemes to link dynamic hydrologic, fisheries, habitat, and riparian ecosystem models with ocean-atmosphere climate models. Understand the primary factors that control fisheries population, and how climate will affect those factors.

15 Assess Natural Systems Response – Other Natural System Gaps

16 Better quantify sediment sources and an assessment of sediment budgets to investigate how climate change could affect erosion, sediment transport, watershed sediment yield, and the vulnerability of reservoirs and waterways to sedimentation. Plant physiology …. ? Landscape changes …. ?

17 Socioeconomic Gaps

18 Insight and understanding related to resource managers and planners’ needs and obstacles they face in coping with climate variability and change Floods and flood impact on infrastructure like reservoirs relative to adaptation efforts. Assessments of reservoirs operating costs given projected of climate change impacts on water supplies, timing of snowmelt, and other hydrologic factors.. Integration of economic and land use data into analyzes of potential land use adaptation policies. Assessing the cost-effectiveness of alternative water management policies. Determine the current public attitude about flood risk reduction activities and reservoir regulation objectives. Developing tools to evaluate whether estimates of energy savings achieved through targeted water management measures will be advantageous to water managers when evaluated against other alternative options. Understanding the benefits and drawbacks of different institutional arrangements to enhancing ecosystem services.

19 Characterizing Future Climate - Information Needs

20 Best practices in participatory risk assessment - continue developing participatory methods for discussing risks, identifying options, and investigating the consequences of these options to identified outcomes. Educating scientists on the decision making process - Coproduction of knowledge has advanced the development of science and assessment that contributes more to exchange of data and information for decisions. Investigate Drivers for Science-based Management -. Examining various context-specific outcomes that motivated decision makers to use scientific information to help develop more effective operating principles and implement approaches to address similar challenges Evaluation of Response Options - research on climate change impacts and adaptation that includes complex human dimensions, such as economics, management, governance, behavior, and equity

Download ppt "Characterizing Future Climate – Information Needs."

Similar presentations

Ads by Google