Download presentation

Presentation is loading. Please wait.

1
**Generation of Electricity: BLv sin**

A wire of length (L)pulled through a magnetic field (B) at an angle 0 at a constant speed (v) will generate a constant voltage (V). a Constant Applied Force R Fa Fb Induced magnetic Force (Fb=BILsin ) b If just the wire segment a-b is pulled, a voltage is attained but no work need be done maintaining the velocity of the wire. If a complete loop is used with a total resistance of R ohms then work must be done to pull the loop at constant velocity and heat is generated in the resistance: Fa D= VIT= -BILD sin V=BLD/T=BLv sin If a loop 2m long and 3 m wide a-b moves to the left at 1 m/s, at right angles to a magnetic field of 2 T, the Voltage produced is 6 volts and the power is 18 watts. The work done moving the loop 2 m into the field while the other end is out, is 36 joules. The applied force must then be18 N.

2
**Generating electricity page 2 a b c Fa x d e f**

Another equation that can be used to calculate the voltage generated in pulling the loop through the field is: V= -^0/^t This can be derived from the diagram below: a b c V= x/t L Fa x d e f F d =work done = VIT=-BILd= Energy generated. V= - BL d/T= - B^A/^T The flux 0 through the loop is BA. 01 is the B times the area bounded by a-b-e-f. As the loop moves further into the field distance x (e to d) the additional area moving into the field is equal to the area bounded by b-c-d-e. Therefore ^0=B^A and V= - B^A/^T and V= -( 2 tesla)(3m)1m= -6 volts

3
**Rotating the loop in a field.**

Now rotate this loop 90 degrees until it is parallel to the field in 2s A 3m B is still 2 tesla; 01= BA= 2(6) 02=0 since no field passes through the loop. V= -^0/^T= /I= - (0-12)/2= - 6 volts 2m axis However, this voltage is an AVERAGE by the nature of deltaB/deltaT. If the work is calculated in rotating the loop 1/4 rotation in 2 s generating 6v (average) we find its not 36 joules as in the previous problem but 44joules! What is going on here? The flux through the the loop (B A cos O ) makes the following graph of flux: Since the Rate of Change of Flux equals the induced V, we can see that it is maximum at …a,b and c and zero at points d, e and f. OB e a b c d f OB = (6)(2) Cos wt

4
**Graph of 0=12 cos x becomes O=12 cos 0.7854 T since x=wT **

Flux Slope = 9.42 2 Time Graph of 0=12 cos x becomes O=12 cos T since x=wT and w=pi/4 = Since V= - ^O/^T the generated voltage = volts

5
**Relationship between the flux moving through the loop and **

the Induced Voltage (VL) Flux Volts 12 Flux O O VL -9.42 Induced voltage

6
Power= V2/R Volts

Similar presentations

OK

Electromagnetic Induction. Induced current/emf(voltage) Current or voltage produced by a changing magnetic field.

Electromagnetic Induction. Induced current/emf(voltage) Current or voltage produced by a changing magnetic field.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google