Presentation is loading. Please wait.

Presentation is loading. Please wait.

05/18/20001 CENIC2000 Internet2 and Global Development: Institutional Impact Michael McRobbie Vice President for Information Technology and CIO Indiana.

Similar presentations


Presentation on theme: "05/18/20001 CENIC2000 Internet2 and Global Development: Institutional Impact Michael McRobbie Vice President for Information Technology and CIO Indiana."— Presentation transcript:

1 05/18/20001 CENIC2000 Internet2 and Global Development: Institutional Impact Michael McRobbie Vice President for Information Technology and CIO Indiana University

2 05/18/20002 1. The Need for Global High Performance Networks The tools of research and education are increasingly based on applications of advanced information technology which require access to distributed deep computing and data resources. The outputs of advanced research and education tools increasingly rely on advanced visualization. Advanced, unique scientific instruments must be available to global research communities. The emergence of the global research community requires advanced methods for supporting the collaboration of geographically distributed researchers.

3 05/18/20003 1.a Distributed Deep Computing and Data Resources The GIOD Project A Caltech, CERN and HP joint project addressing data storage and access problems posed by nextgen particle collider experiments which will start at CERN in 2005. Data rates from online systems will be of order 100 MBytes/sec; yearly accumulation of several PetaBytes. Raw data will be reconstructed for particle tracks, energy clusters, etc. in near-real time by large processor farms (~10 7 MIPS) based on commodity hardware. http://pcbunn.cithep.caltech.edu/

4 05/18/20004 DNA data has accumulated more rapidly than compute power so researchers must often exclude potentially infor- mative data to make statistical analysis practical. Utilizing the computationally intensive maximum-likelihood method of phylogenetic inference in a globally distributed collection of computational nodes, Indiana University, National University of Singapore and ACSys CRC in Australia have analyzed the DNA of cytoplasmic coat proteins, micro- sporidia, and cyanobacteria. Distributed Deep Computing and Data Resources Maximum Likelihood Analysis Of Phylogenetic Data http://www.indiana.edu/~rac/hpc/cp.html

5 05/18/20005 1.b Advanced Visualization Virtual Pelvic Floor Supported in part by the National Library of Medicine and developed by researchers at University of Illinois Chicago and Cook County Hospital, the Virtual Pelvic Floor is a new method of teaching the complex anatomy of the pelvic region utilizing virtual reality and advanced networking technology. The stereoscopic collaborative environment is used to teach residents and students the highly complex anatomy and physiology of the pelvic floor. http://www.amia.org/pubs/symposia/D005507.PDF

6 05/18/20006 Advanced Visualization High Brilliance X-ray Crystallography for Macromolecular Structure Determination ImmersaDesk2 Advanced Photon Source Virtual Reality Cave http://www.cs.indiana.edu/ngi

7 05/18/20007 1.c Scientific Instruments Trans-Pacific Telemicroscopy Scientists at the Osaka University Research Center for Ultra High Voltage Electron Microscopy (UHVEM) and University of California San Diego National Center for Microscopy and Imaging Research (NCMIR) successfully use international advanced research networks to couple the world's largest and most powerful (3 million volt) transmission electron microscope at UHVEM to a remote-use computer pavilion set up at NCMIR. http://www.npaci.edu/online/v3.10/telemicroscopy.html

8 05/18/20008 Scientific Instruments Advanced Photon Source tomographic reconstruction real-time collection wide-area dissemination desktop & VR clients with shared controls Advanced Photon Source archival storage http://epics.aps.anl.gov/welcome.html

9 05/18/20009 1.d Advanced Collaboration Space Physics and Aeronomy Research Collaboratory The Space Physics and Aeronomy Research Collaboratory (SPARC) is an NSF-sponsored community resource for the upper atmospheric and space sciences; operating 24 hours a day for scientific collaboration and access to real-time and archival data. http://sparc-1.si.umich.edu/sparc/central

10 05/18/200010 Advanced Collaboration National Tele-immersion Initiative A telecubicle has a stereo-immersive desk surface as well as at least two stereo- immersive walls. These three display surfaces meet in the formation of a desk against a corner. When linked to others on the net, the telecubicle forms a virtual collaborative environment. http://io.advanced.org/tele-immersion/

11 05/18/200011 Advanced Collaboration Access Grid The US Dept of Energy-sponsored Access Grid supports human interaction across the Grid. It consists of multimedia displays, presentation and interaction environments, interfaces to Grid middleware and interfaces to visualization environments. The Access Grid supports large-scale distributed meetings, collaborative work sessions, seminars, lectures, tutorials and training. The Access Grid design point is group to group communication, complementing the Computational Grid. http://www-fp.mcs.anl.gov/fl/accessgrid/

12 05/18/200012 2. Advanced Applications Require: High bandwidth, e.g. Trans-Pacific Telemicroscopy requires > 35Mbps continuous for visual display. Low or predictable latency, e.g. remote operation of scientific instrumentation requires bounded signaling latency. Bandwidth and latency contracts provided to applications by network QoS (quality of service) mechanisms. Advanced network services, e.g. multicast-enabled multipoint collaboration.

13 05/18/200013 Advanced Applications also Require Application middleware services, e.g. Globus, which provide a basic software infrastructure that integrates geographically distributed computational and information resources.

14 05/18/200014 3. US High Performance Research and Education Networks Government agency: –ESNet - Department of Energy (1980s) –NREN - NASA (1997) –iDREN - Department of Defense (1996) Research and Education –vBNS - NSF (1995) –Abilene - Internet2 Project/UCAID (1998)

15 05/18/200015 4. The vBNS A high-performance research and education network developed through cooperative agreement between the National Science Foundation (NSF) and MCI. Five year program inaugurated in 1995. ~100 connections made as of January 2000. The NSF and MCIW have entered into a three-year no-cost extension of the cooperative agreement beginning April 1, 2000. Now offers commercial connections as vBNS+.

16 05/18/200016 5. Internet2 and Abilene Internet2 is a consortium of over 170 universities, founded in 1996, working in partnership with industry and government to develop and deploy advanced network applications and technologies, accelerating the creation of tomorrow's Internet. Abilene is a high-performance network for higher education and industry collaborators within the U.S. Abilene and Internet2 are projects of the University Corporation for Advanced Internet Development (UCAID).

17 05/18/200017 Abilene Abilene announced in April 1998 by VP Gore at the White House. Indiana University announced in July 1998 as the Network Operations Center (NOC) for Abilene. Abilene became operational February 1999. Abilene is the world’s most advanced production high-speed network.

18 05/18/200018 The Abilene Project Abilene is a high-speed network to: –support Internet2 applications development –provide an advanced network testbed –demonstrate next generation operational and QoS capabilities –create facilities for network research

19 05/18/200019 Abilene Network Engineering Objectives Deploy a production network to support Internet2 applications R&D Establish network quality of service (QoS) Support native multicast Utilize GigaPoPs as effective service points

20 05/18/200020 Abilene Partners University Corporation for Advanced Internet Development (Management) Qwest Inc. (Fiber) Cisco Inc. (Routers) Nortel Inc. (SONET Transmission Equipment) Indiana University (Network Operations Center)

21 05/18/200021

22 05/18/200022 Abilene Characteristics 10,000 miles of national backbone operating at 2.4 Gbps (OC48) among GigaPoPs Connections to Abilene at 155 Mbps (OC3), 622 Mbps (OC12), and 2.4 Gbps (OC48) Packet/IP over Sonet technology (PoS)

23 05/18/200023 Access to Abilene Backbone Access Nodes are very close to almost all of the university GigaPoPs Access Nodes are located at Qwest PoPs Currently there are 131 Access Nodes –will grow as Qwest SONET plant grows

24 05/18/200024 Abilene Access Nodes Atlanta Indianapolis Kansas City Denver Los Angeles Sacramento Seattle Abilene Core Node Abilene Access Node Operational January 1999 Houston Cleveland New York

25 05/18/200025 Abilene Services Current –High Performance (best effort) IPv4 –Performance Measurement –Multicast –IPv6 Future –QoS via DiffServ (QBone) –Voice over IP (VoIP)

26 05/18/200026 Networks Peering with Abilene National Research Networks vBNSESNETNREN iDREN International Research Networks CA*netAPAN/TransPAC NORDUnet SURFnetDANTEJANET RENATERNII (SINET)SingAREN TanetIUCC

27 05/18/200027 The Abilene Network Operations Center Operated by Indiana University Housed at IUPUI (Indianapolis) Core engineering team from IU Bloomington & IUPUI Co-located with the IU, TransPAC, STAR TAP and Euro-Link NOCs 7 x 24 Operation –Dedicated front-line operators –Engineers on duty To be located in the new Communications Technology Complex at IUPUI http://www.abilene.iu.edu

28 05/18/200028 The Abilene NOC Weather Map http://hydra.uits.iu.edu/~abilene/traffic/abilene.html

29 05/18/200029 6. STAR TAP & HPIIS Global High-Performance Research & Education Networking The growth of international scientific collaborations leads to requirement for global data communications infrastructure on par with what is available domestically. The Science, Technology, And Research Transit Access Point (STAR TAP) is persistent infrastructure funded by the NSF to facilitate the interconnection and interoperability of advanced international networking and applications. STAR TAP anchors the NSF international connections program (HPIIS) networks.

30 05/18/200030 STAR TAP & HPIIS Global High-Performance Research & Education Networking The NSF HPIIS (High Performance International Internet Services) program solicited international connections to provide the basis for advanced network support of international collaboration in research and education. STAR TAP provides a common interconnection point, HPIIS provides the links to global high performance research and education networks

31 05/18/200031 International Network Operations Center at Indiana University http://noc.startap.net

32 05/18/200032 International Network Operations Center at Indiana University IU manages the TransPAC HPIIS project –http://www.transpac.orghttp://www.transpac.org and provides centralized NOC and engineering for STAR TAP and the Euro-Link and MIRnet HPIIS networks –http://noc.startap.nethttp://noc.startap.net The International Networks NOC is fully integrated with the Abilene NOC –http://www.abilene.iu.eduhttp://www.abilene.iu.edu

33 05/18/200033 International Network Operations Center at Indiana University International and Abilene NOC services include: –Problem management –Network monitoring –Change management –Documentation –Reports –Security management –Engineering –Testing & evaluation

34 05/18/200034 STAR TAP Logical Map

35 05/18/200035 STAR TAP Physical Architecture

36 05/18/200036 HPIIS Networks – TransPAC linking APAN (Asia Pacific Advanced Network)

37 05/18/200037 HPIIS Networks – MIRnet linking Russia

38 05/18/200038 HPIIS Networks – Euro-Link linking European National Research Networks CERN –European Laboratory for Particle Physics IUCC –Israel Inter-University Computation Center NORDUnet –Nordic Countries' National Networks for Research and Education RENATER2 –France Research and Education Network SURFnet –The Netherlands Research and Education Network

39 05/18/200039 HPIIS Meets Internet2 – The Distributed STAR TAP The original STAR TAP architecture of a single interconnection point in Chicago is expected to evolve to a distributed model supporting multiple international connecting points. Internet2/Abilene is expected to offer transit of international traffic to provide the underpinning of the distributed STAR TAP.

40 05/18/200040 HPIIS Meets Internet2 – The Old Model

41 05/18/200041 HPIIS Meets Internet2 – The Distributed STAR TAP NGIX-WEST Abilene SingAREN TransPAC 2001(?) STAR TAP / NGIX-NORTH Abilene, CA*net3, TransPAC, vBNS, CERN, SURFnet, ESnet, MIRnet, SINET, DREN, RENATER, SingAREN, NREN, TAnet, NORDUnet, IUCC and GEMnet NGIX-EAST Abilene, vBNS, DFN, JAnet, ESnet, SURFnet, INFN, NORDUnet, DANTE, CA*net3

42 05/18/200042 7. Institutional Impact: Exploiting Internet2 and HPIIS The development of information technology at IU is guided by a comprehensive University-wide strategic plan, http://www.indiana.edu/~ovpit/strategic/.http://www.indiana.edu/~ovpit/strategic/ The five-year plan commits expenditures of over $200M. The plan stresses the importance of local, regional, national and international networking.

43 05/18/200043 Institutional Impact: Exploiting Internet2 and HPIIS Switched 10/100Mbps Ethernet to every desktop Gigabit campus backbone Upgraded regional campus connections to 45Mbps Robust optical fiber infrastructure within Indiana Dark fiber connections between major campuses Establishment of the State GigaPoP in Indianapolis Regional Cyberbelt initiative to interconnect IU, Purdue, the Indiana GigaPoP and potentially NCSA via dark fiber Offered High Performance Network Application Program grants

44 05/18/200044

45 05/18/200045 Indiana GigaPoP

46 05/18/200046 The CyberBelt Initiative

47 05/18/200047 IU and EVL at UIC in collaboration with University of Tokyo and Keio University are organizing iGrid2000 - a major research demonstration at the INET2000 conference, July 18-21, in Yokohama, Japan to showcase the ongoing development of an International Grid (iGrid) for global community networking.

48 05/18/200048 Over two dozen applications featuring technological innovations and application advancements requiring high-speed networks, with emphasis on distributed supercomputing, tele-immersion, remote instrumentation, large datasets, collaboration, digital video, streaming media and high-definition television will be demonstrated. http://www.startap.net/igrid2000

49 05/18/200049 8. Conclusion IU’s exceptional commitment to engagement in local, regional, national and international networking makes a major contribution at IU to: –the development and utilization of advanced tools for research and education –the facilitation of global scientific collaborations –network technology research and development Hence this involvement is important strategically to the research and education missions of the University and to the development of rich connections and relationships in global research communities.

50 05/18/200050 URLs Indiana University Office of the Vice President for Information Technology –http://www.indiana.edu/~ovpithttp://www.indiana.edu/~ovpit Information Technology @ Indiana University –http://www.indiana.edu/~itiuhttp://www.indiana.edu/~itiu


Download ppt "05/18/20001 CENIC2000 Internet2 and Global Development: Institutional Impact Michael McRobbie Vice President for Information Technology and CIO Indiana."

Similar presentations


Ads by Google