Presentation is loading. Please wait.

Presentation is loading. Please wait.

CH 10.2 Meiosis.

Similar presentations


Presentation on theme: "CH 10.2 Meiosis."— Presentation transcript:

1 CH Meiosis

2 Meiosis Meiosis is cell division that produces gametes with half the number of chromosomes as a body cell

3 Meiosis Diploid cell: has 2 of each kind of chromosome
All body cells, except gametes, are diploid cells (such as liver or lung cells) When they divide, this is called mitosis Haploid cell: has 1 of each kind of chromosome Gametes are haploid cells When they divide, this is called meiosis

4 Why Meiosis? Each type of organism has a specific number of chromosomes (humans have 46 chromosomes) Because each parent passes along a chromosome, there has to be some way for offspring to have the same number of chromosomes as their parents and not double

5 Why Meiosis? Gametes that are produced are sperm cells for males and egg cells for females Sexual reproduction: when haploid egg and sperm cells join together to form a diploid zygote In humans, each sperm and egg cell has 23 chromosomes (which is half of 46, the normal number of chromosomes) or Sperm (23) + Egg (23) = Zygote (46)

6 Why Meiosis? For the most part, healthy human zygotes cannot have more than 46 chromosomes Once formed, zygotes undergo mitosis to grow and develop (asexual reproduction)

7 Before Meiosis Homologous chromosomes are attached to each other
Homologous chromosomes: 2 of the same type of chromosome Chromosomes copy themselves so that they can be passed along to the daughter cells

8 Before Meiosis Tetrad: 2 homologous chromosomes attached together (= 4 sister chromatids)

9 Genetic Variation Genetic variation: rearrangement of alleles that can produce completely new combinations (this is essential for evolution to occur)

10 Genetic Variation Crossing Over- When the homologous chromosomes pair so tightly that a piece of the chromatid breaks off. The piece changes place with a piece from the other homologous tetrad. This scrambles the traits around = genetic variety.

11 Genetic Variation Genetic Recombination: the reassortment of chromosomes and genetic material, either by crossing over or independent assortment, which increases genetic variety

12 Genetic Variation Both crossing over and independent assortment are completely RANDOM…so this is why humans can sometimes look completely different from other family members

13 Meiosis I—2 new cells are formed
Prophase I: *Tetrads condense (2 homologous chromosomes attached together) *Crossing over occurs between chromosomes *Nuclear membrane disappears Centrosomes move to opposite ends of cell to form spindle fibers Metaphase I: Tetrads line up in the middle of the cell

14 Meiosis I Anaphase I: Tetrads split and each set of sister chromatids moves to opposite ends of the cell Telophase I: Cytokinesis (division of the cytoplasm) results in 2 new cells, each with homologous chromosomes

15 Meiosis II (4 new cells are formed) *LIKE MITOSIS*
Prophase II: Centrosomes on the chromosomes form spindle fibers in preparation to be pulled apart Metaphase II: Chromosomes (sister chromatids) line up randomly in the middle

16 Meiosis II Anaphase II: Sister chromatids separate and move to opposite ends of the cell Telophase II/Cytokinesis: : New nuclei are formed and four daughter cells are produced, each containing ONE chromosome from each homologous pair

17

18 Mistakes in Meiosis Nondisjunction: when homologous chromosomes don’t separate from each other during meiosis So homologous chromosomes move together into a new gamete giving that gamete too many chromosomes, while the other new gamete is missing the chromosome

19 Mistakes in Meiosis Organisms with extra chromosomes can survive
Organisms with too few chromosomes usually do not survive

20 Mistakes in Meiosis Polyploidy: when organisms have more than the normal number of chromosome sets instead of 46 chromosomes, they might have double or triple that number Can be lethal for animals but not plants (plants just usually get bigger)

21 Conditions that Result from Extra Chromosomes
Examples of Nondisjunction Genotype (X=Female sex chromosome, Y= male sex chromosome) Turner’s Syndrome XO Trisomy X (metafemales) XXX Klinefelter’s syndrome XXY Jacob’s syndrome XYY Down syndrome TRISOMY 21 (3 copies) Patau’s syndrome TRISOMY 13 Lethal condition in males OY

22 Comparing Mitosis and Meiosis
DNA replicates in interphase ONE division of chromosomes Separate sister chromatids TWO divisions of chromosomes Separate homologous chromosomes (meiosis I) Separate sister chromatids (meiosis II) Makes 2 identical DIPLOID cells Makes 4 HAPLOID cells Chromosome # is identical to parent cell Chromosome # is HALF of the parent cell Used for replacing old cells, growth Used to make gametes


Download ppt "CH 10.2 Meiosis."

Similar presentations


Ads by Google