Presentation is loading. Please wait.

Presentation is loading. Please wait.

NICTA Copyright 2010From imagination to impact How A Consumer Can Measure Elasticity for Cloud Platforms Sadeka Islam 1,2, Kevin Lee 1,2, Alan Fekete 1,3,

Similar presentations


Presentation on theme: "NICTA Copyright 2010From imagination to impact How A Consumer Can Measure Elasticity for Cloud Platforms Sadeka Islam 1,2, Kevin Lee 1,2, Alan Fekete 1,3,"— Presentation transcript:

1 NICTA Copyright 2010From imagination to impact How A Consumer Can Measure Elasticity for Cloud Platforms Sadeka Islam 1,2, Kevin Lee 1,2, Alan Fekete 1,3, Anna Liu 1,2 National ICT Australia (NICTA) 1, University of New South Wales (UNSW) 2, University of Sydney (USYD) 3

2 NICTA Copyright 2010From imagination to impact Our research agenda Help consumers in use of cloud platforms –Decision-making What cloud is good for What concerns need to be addressed –Processes Design Development Governance –Monitoring/tuning Dashboard tool design Focus on information interface provided by cloud platforms –What can consumer measure? –What can consumer control? Use-inspired research 2

3 NICTA Copyright 2010From imagination to impact Elasticity Elasticity is a key distinguishing feature of cloud –What is elasticity? the ability of software to meet changing capacity demands, deploying and releasing necessary resources on-demand [Yefim et al.] –Cloud providers claim to provide elastic solutions An elastic platform offers responsive resource provisioning/deprovisioning Supply should closely track varying demand for resources Contrast with in-house IT –Weeks/months to provision systems –Long periods of wasted resources, and also potential for serious losses if demand spikes above what was provisioned Challenge: No existing metrics to quantify elasticity 3

4 NICTA Copyright 2010From imagination to impact Elasticity Measure What is our goal? –Measure and compare elasticity of cloud providers e.g., how elastic is EC2? Is it more elastic than Azure instance? Under what configurations? Do this as consumer (use information provided through platforms API) 4

5 NICTA Copyright 2010From imagination to impact Basic Concept of Elasticity 5

6 NICTA Copyright 2010From imagination to impact Consumers benchmark Consumer will submit requests to platform following some workload growth/decay patterns –If platform provides API to scale out/back, then consumer can request this as part of workload Consumer will observe platform through publicly available monitoring/reporting mechanisms –Eg charges levied –Eg reported utilization Note: platform cant game the measurement, as it doesnt know that this is a benchmark rather than any ordinary workload 6

7 NICTA Copyright 2010From imagination to impact Our approach - overview Submit a workload that follows some pattern –Eg sinusoidal, with given period and trough-to-peak growth –Defined by number of requests per second, and type of requests Measure the demand on the platform –Utilization is a good proxy, except when underprovisioned Measure the supply –What the consumer is charged for Measure the latency and other QoS aspects Calculate a penalty for underprovisioning –Convert each QoS violation to a financial penalty Calculate a penalty for overprovisioning –Excess of charged resources of what is needed (utilized) Combine penalties for an overall score 7

8 NICTA Copyright 2010From imagination to impact Our Approach - details Key Features: –Economic model (in terms of financial cost) –Measure over-provisioning based on excess charging (e.g., excess CPU cycles, memory, etc.) –Measure under-provisioning through QoS requirements (e.g., 90% of requests with less than 500ms response time) –Distinguish between charged and allocated resources (i.e., resource and pricing model granularity) –Evaluation based on a range of workload patterns (e.g., Sine curve, exponential, linear, random, etc.) –Final score relative to baseline (SPEC approach) –Impact of rule configurations on elasticity (e.g., +1 instance when CPU > 80% & -1 instance when CPU < 30%) 8

9 NICTA Copyright 2010From imagination to impact Related Work Kossmans group at ETHZ[1] –Research project on benchmarking cloud platforms –Look at a wide variety of measures –Omit to look at speed of responding to change in workloads, nor workloads that shrink and grow Weinmans numeric measurement on elasticity[2] –Considers arbitrary workload patterns –Constructs a numeric score for how a platform handles a workload –Reflects impacts of both over- and under-provisioning –Pure theoretical account 9

10 NICTA Copyright 2010From imagination to impact Penalty for Over-provisioning Input functions: –R i (t) and D i (t) denote the available supply and demand curves respectively –M i (t) denotes the chargeable supply –c i (t) indicates what the consumer must pay for each resource unit Penalty calculation: 10

11 NICTA Copyright 2010From imagination to impact Penalty for Under-provisioning Input functions: –p q (t) reflects the amount of unsatisfactory behaviour observed on the platform at time t –p opt q (t) denotes the limit of the amount of unsatisfactory behaviour observed in a system that is statically allocated with K resources –f q takes the observed measurement of unsatisfactory behaviour and maps this to the financial impact on the consumer Penalty calculation: 11

12 NICTA Copyright 2010From imagination to impact Total Penalty Rate for an Execution Calculate the overall penalty score P(t s,t e ) accrued during an execution from t s till t e –Sum of the penalties from both over- and under-provisioning –Expressed in dollars per hour –A lower score indicates a more elastic response to the given workload Penalty calculation: 12

13 NICTA Copyright 2010From imagination to impact Single Figure of Merit for Elasticity Take into account a suite of different workloads Combine measured penalty rates from several workloads into a single summary number Follow the approach used by the SPEC family of benchmarks –Choose a reference platform –Measure each workload on that platform and platform of interest –Take ratio of the penalty rate on the platform we are measuring to the reference platform –Combine the ratios for the different workloads by geometric mean 13

14 NICTA Copyright 2010From imagination to impact Concrete Choices for an Elasticity Benchmark Over-provisioning penalty –Deal with a single resource (CPU capacity, relative to a standard small EC2 instance) Financial charge is $0.085 per hour per instance Under-provisioning penalty –Used the following two QoS aspect: (Latency) No penalty as long as 90% of requests have response time up to 3 seconds; otherwise, a cost penalty, 12.5c will apply for each 1% of additional requests (beyond the allowed 10%) that exceed the 3 seconds latency (Availability) Cost penalty of 10c will apply for each 1% of requests that fail completely (i.e. dropped or timed out) 14

15 NICTA Copyright 2010From imagination to impact Concrete Choices for an Elasticity Benchmark (contd) A suite of 10 different workloads which grow and shrink in a variety of shapes: –Sinusoidal workload –Sinusoidal workload with plateau –Exponentially bursting workload –Linearly growing workload –Random workload 15

16 NICTA Copyright 2010From imagination to impact Case Study: Sanity Checking Trends in Elasticity Scores –Penalty varies with the type of workload –Overall penalty is dominated by loss of revenue due to under-provisioning –For sinusoidal workload patterns, the overall penalty declines with the increase in waveperiod –Insertion of plateau to sinusoidal workload wipes out resource reuse phenomena –EC2 seems to be inelastic to random and highly fluctuating workload patterns 16

17 NICTA Copyright 2010From imagination to impact Experimental Results 17 Reflects higher under- provisioning penalty between mins Shows higher over- provisioning penalty between mins Chargeable supply always higher than available supply

18 NICTA Copyright 2010From imagination to impact Experimental Results 18 High under-provisioning penalty due to dropped requests and time-outs Unable to cope with fast- paced workload patterns

19 NICTA Copyright 2010From imagination to impact Experimental Results 19 Resource trapping –Unable to cut back to its initial state after a temporary workload burst Compare between two rule sets –Higher instance increments works better with sharper workload increase

20 NICTA Copyright 2010From imagination to impact Experimental Results: Impact of Scaling Rules on Elasticity Compare between two scaling rules in terms of elasticity –Compare in a per workload basis (e.g. for sine_30, / = 0.52) –Calculate Single Figure of Merit from the suite of workloads Geometric Mean is 0.65 < 1 (hence Rule Set 2 yields greater elasticity than Rule Set 1) 20

21 NICTA Copyright 2010From imagination to impact Conclusion Small and medium enterprises are heading towards the cloud for many reasons –Exploits elasticity when facing with time-varying workload that may be unpredictable Choose appropriately between platforms We offer the first concrete proposal giving a numeric score for elasticity –Measurement by consumer, using information available –Refined Weinmans theoretical work Especially new ways to use SLAs to determine penalties for under-provisioning –Showed that one gets poor elasticity when following a widespread ruleset for provisioning and deprovisioning 21

22 NICTA Copyright 2010From imagination to impact Future Work Extend our measurements to other platforms with a wider range of features Consider workloads that grow much further than our current set Try examples with a greater range of SLAs and opportunity cost functions Make benchmark running as automatic as possible –Consumer could download a package to get a score for each platform 22

23 NICTA Copyright 2010From imagination to impact Recent Cloud Computing Research at NICTA Van T. K. Tran, Kevin Lee, Alan Fekete, Anna Liu, Jacky Keung, Size Estimation of Cloud Migration Project with Cloud Migration Point (CMP) (ESEM-11) Sadeka Islam, Jacky Keung, Kevin Lee, Anna Liu, Empirical Prediction Models for Adaptive Resource Provisioning in the Cloud (FGCS journal) Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee, Anna Liu, Data Consistency Properties and the Trade-offs in Commercial Cloud Storage: The Consumers Perspective (CIDR-11) 23

24 NICTA Copyright 2010From imagination to impact References 1.D. Kossmann, T. Kraska, and S. Loesing. Anevaluation of alternative architectures for transaction processing in the cloud. In Proceedings of the 2010 international conference on Management of data, SIGMOD 10, pages 579–590, New York, NY, USA, ACM. 2.J. Weinman. Time is Money: The Value of On-Demand, Jan Working paper (Jan 2011), from oney.pdf 24


Download ppt "NICTA Copyright 2010From imagination to impact How A Consumer Can Measure Elasticity for Cloud Platforms Sadeka Islam 1,2, Kevin Lee 1,2, Alan Fekete 1,3,"

Similar presentations


Ads by Google