Download presentation

1
**Sampling Distributions**

Chapter 7

2
**The Concept of a Sampling Distribution**

Repeated samples of the same size are selected from the same population. The same sample statistic is calculated from the data in EACH sample. The distribution of the sample statistics is the SAMPLING DISTRIBUTION of that sample statistic.

3
The Sampling Process SAMPLE POPULATION μ

4
**The Sampling Distribution**

Repeated Sampling POPULATION μ Sampling Distribution

5
What is Standard Error? Standard Error has been identified as a quantity that is not understood. Is it a Standard Deviation? Standard Error of what? What does it tell us? The purpose of this presentation is to make the concept of Standard Error clearer and more understandable.

6
**This sample mean is an ESTIMATE of the population mean.**

The Sampling Process 30, 42, 48, 49, 61, 54, 41, 38, 59, 57 Calculate Mean = 47.9 This sample mean is an ESTIMATE of the population mean. SAMPLE We should not be surprised that the estimate does not equal the true mean for the population! POPULATION Mean = 50

7
The Sampling Process 30, 42, 48, 49, 61, 54, 41, 38, 59, 57 Calculate Mean = 47.9 Plot the Sample Mean SAMPLE POPULATION Mean = 50

8
**The Sampling Distribution**

The Sampling Distribution Calculate means for each sample m1, m2, … Repeated Sampling Plot All Sample Means Sampling Distribution of the Sample Means

9
**What about this sampling distribution?**

Each dot represents a mean from one of the samples. Each sample mean is an ESTIMATE of the population mean. Notice that center of this graph is around 50 and the spread ranges from 45 to 55.

10
**What about this sampling distribution?**

The mean of sampling distribution (that is, the mean of the sample means) is the MEAN of the population! AND… We call the standard deviation of the distribution of sample means the STANDARD ERROR OF THE ESTIMATE OF THE POPULATION MEAN.

11
In Summary STANDARD DEVIATION is a measure of the spread of data in a population or in a sample. STANDARD ERROR is a measure of the spread of the ESTIMATES of a measure of a population calculated from repeated sampling.

12
**Variation in ESTIMATES FROM SAMPLES**

In short… STANDARD DEVIATION Variation in DATA ERROR Variation in ESTIMATES FROM SAMPLES

13
Point Estimators When inferences are made from the sample to the population, the sample mean is viewed as an estimator of the mean of the population from which the sample was selected. Similarly, the proportion of successes in a sample is an estimator of the proportion of successes in the population.

14
**Properties of Point Estimators**

The summary statistic should be UNBIASED, that is the mean of the sampling distribution is equal to the value you would get if you computed the summary statistic using the entire population. More formally, an estimator is unbiased if its expected value equals the parameter being estimated. The summary statistic should have as little variability as possible (be more precise than other estimates) and should have a standard error that decreases as the sample size increases.

15
Homework Pg AP style P2,P3,E5 E2,4,6,8,10

16
Population Parameter Sample Statistic Sampling Distribution Mean Standard Deviation Size

17
**Properties of the Sampling Distribution of the Sample Mean**

If a random sample of size n is selected from a population with mean µ and standard deviation σ, then The mean of the sampling distribution of equals the mean of the population µ

18
**Properties of the Sampling Distribution of the Sample Mean**

If a random sample of size n is selected from a population with mean µ and standard deviation σ, then The standard deviation, , of the sampling distribution of , sometimes called the standard error of the mean, equals the standard deviation of the population σ, divided by the square root of the sample size n: *Only used when N>10n

19
**Properties of the Sampling Distribution of the Sample Mean**

If a random sample of size n is selected from a population with mean µ and standard deviation σ, then The shape of the sampling distribution will be approximately normal if the population is approximately normal; for other populations, the sampling distribution becomes more normal as n increases This property is called the CENTRAL LIMIT THEOREM (CLT)

20
**Reasonably Likely Averages**

Mean ± 1.96(SE) 1.96 is the z-score and comes from the cut off point of the middle 95% of a normal distribution

21
**If the Sampling Distribution is known…**

Probability questions about sample statistics can be answered. For example, A simple random sample of 50 is selected from a normal population with a mean of 50 and a standard deviation of 10. What is the probability that the sample mean will be greater than 53?

22
The Answer… A simple random sample of 50 is selected from a normal population with a mean of 50 and a standard deviation of 10. What is the probability that the sample mean will be greater than 53?

23
**Properties of the Sampling Distribution of the sum of a Sample**

If a random sample of size n is selected from a distribution with mean µ and standard deviation σ, then The mean of the sampling distribution of the sum is The standard error of the sampling distribution of the sum is CLT applies

24
HOMEWORK Pg 440 E15,16,17,19,20,21,22,25,26,29,30,31,32, 33,34

25
**Sampling Distribution of the Sample Proportion**

We will now move from studying the behavior of the sample mean to studying the behavior of the sample proportions (the proportion of “successes” in the sample)

26
**Properties of the Sampling Distribution of the Number of Successes**

If a random sample of size n is selected from a population with proportion of successes, p, then the sampling distribution of the number of successes X Has mean Has standard error Will be approximately normal as long as n is large enough As a guideline both np and n(1-p) are at least 10 np≥10 and n(1-p) ≥10

27
Example The use of seat belts continues to rise in the United States, with overall seat belt usage of 82%. Mississippi lags behind the rest of the nation—only about 60% wear seat belts. Suppose you take a random sample of 40 Mississippians. How many do you expect will wear seat belts? What is the probability that 30 or more of the people in your sample wear seat belts?

28
Solution

29
**Sampling Distributions of the Sample Proportion**

True proportion of successes is represented by “p” Sample proportion of successes is represented by “ ” = (# of successes)/(sample size)

30
**Sampling Distribution of p-hat**

How does behave? To study the behavior, imagine taking many random samples of size n, and computing a p-hat for each of the samples. Then we plot this set of with a histogram.

31
**Sampling Distribution of p-hat**

32
Properties of p-hat When sample sizes are fairly large, the shape of the distribution will be normal. The mean of the distribution is the value of the population parameter p. The standard deviation of this distribution is the square root of p(1-p)/n. As a guideline use np ≥ 10 and n(1-p) ≥ 10

33
Example About 60% of Mississippians use seat belts. Suppose your class conducts a survey of 40 randomly selected Mississippians. What is the chance that 75% or more of those selected wear seat belts? Would it be quite unusual to find that fewer than 25% of Mississippians selected wear seat belts?

34
Solution

35
Homework Pg 435 E35-44

Similar presentations

© 2020 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google