Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ch. 12 & 13 - Gases III. Two More Laws Ideal Gas Law & Daltons Law.

Similar presentations


Presentation on theme: "Ch. 12 & 13 - Gases III. Two More Laws Ideal Gas Law & Daltons Law."— Presentation transcript:

1 Ch. 12 & 13 - Gases III. Two More Laws Ideal Gas Law & Daltons Law

2 V n A. Avogadros Principle b Equal volumes of gases contain equal numbers of moles at constant temp & pressure true for any gas

3 PV T VnVn PV nT B. Ideal Gas Law = k UNIVERSAL GAS CONSTANT R=0.0821 L atm/mol K R=8.315 dm 3 kPa/mol K = R You dont need to memorize these values! Merge the Combined Gas Law with Avogadros Principle:

4 B. Ideal Gas Law UNIVERSAL GAS CONSTANT R=0.0821 L atm/mol K R=8.315 dm 3 kPa/mol K PV=nRT You dont need to memorize these values!

5 GIVEN: P = ? atm n = 0.412 mol T = 16°C = 289 K V = 3.25 L R = 0.0821 L atm/mol K WORK: PV = nRT P(3.25)=(0.412)(0.0821)(289) L mol L atm/mol K K P = 3.01 atm C. Ideal Gas Law Problems b Calculate the pressure in atmospheres of 0.412 mol of He at 16°C & occupying 3.25 L.

6 GIVEN: V = ? n = 85 g T = 25°C = 298 K P = 104.5 kPa R = 8.315 dm 3 kPa/mol K C. Ideal Gas Law Problems b Find the volume of 85 g of O 2 at 25°C and 104.5 kPa. = 2.7 mol WORK: 85 g 1 mol = 2.7 mol 32.00 g PV = nRT (104.5)V=(2.7) (8.315) (298) kPa mol dm 3 kPa/mol K K V = 64 dm 3

7 D. Daltons Law b The total pressure of a mixture of gases equals the sum of the partial pressures of the individual gases. P total = P 1 + P 2 +...

8 GIVEN: P O2 = ? P total = 1 atm P CO2 = 0.285 torr P N2 = 593.525 torr WORK: P total = P CO2 + P N2 + P O2 1 atm = 0.000375 atm +.780954 atm + P O2 P O2 = 0.219 atm D. Daltons Law b Three of the primary components of air are CO 2, N 2, and O 2. In a sample containing only these three gases at a pressure of 1.00 atm, P CO2 = 0.285 torr and P N2 = 593.525 torr. What is the partial pressure of O 2 ? =.000375 atm =.780954 atm

9 D. Daltons Law When H 2 gas is collected by water displacement, the gas in the collection bottle is actually a mixture of H 2 and water vapor. Water exerts a pressure known as water-vapor pressure So, to determine total pressure of gas and water vapor inside a container, make total pressure inside bottle = atmosphere and use this formula: P atm = P gas + P H 2 O

10 GIVEN: P H2 = ? P total = 94.4 kPa P H2O = 2.72 kPa WORK: P total = P H2 + P H2O 94.4 kPa = P H2 + 2.72 kPa P H2 = 91.7 kPa D. Daltons Law b Hydrogen gas is collected over water at 22.5°C. Find the pressure of the dry gas if the atmospheric pressure is 94.4 kPa. Look up water-vapor pressure on p.899 for 22.5°C. Sig Figs: Round to least number of decimal places. The total pressure in the collection bottle is equal to atmospheric pressure and is a mixture of H 2 and water vapor.

11 GIVEN: P gas = ? P total = 742.0 torr P H2O = 42.2 torr WORK: P total = P gas + P H2O 742.0 torr = P H2 + 42.2 torr P gas = 700. torr b A gas is collected over water at a temp of 35.0°C when the barometric pressure is 742.0 torr. What is the partial pressure of the dry gas? Look up water-vapor pressure on p.899 for 35.0°C. Sig Figs: Round to least number of decimal places. D. Daltons Law The total pressure in the collection bottle is equal to barometric pressure and is a mixture of the gas and water vapor.


Download ppt "Ch. 12 & 13 - Gases III. Two More Laws Ideal Gas Law & Daltons Law."

Similar presentations


Ads by Google