Presentation is loading. Please wait.

Presentation is loading. Please wait.

Benchmarking DIVIMP-ERODEPDIF ITER predictions on material mixing using JET results M. Reinelt, K. Schmid, K. Krieger SEWG Meeting JET07.07.2009 Max-Planck-Institut.

Similar presentations


Presentation on theme: "Benchmarking DIVIMP-ERODEPDIF ITER predictions on material mixing using JET results M. Reinelt, K. Schmid, K. Krieger SEWG Meeting JET07.07.2009 Max-Planck-Institut."— Presentation transcript:

1 Benchmarking DIVIMP-ERODEPDIF ITER predictions on material mixing using JET results M. Reinelt, K. Schmid, K. Krieger SEWG Meeting JET Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany

2 Outline Concepts and status of modeling of PWI with DIVIMP (Work in progress!) Limits and extensions of DIVIMP Standard and extended grids Modeling of material mixing Status of Be / C calculations for JET Short term plans

3 What is DIVIMP ? DIVIMP : "DIV ertor IMP urities " developed by P.Stangeby / D. Elder (1992) Designed for impurity transport in divertor and SOL of tokamaks Simulates (erosion) and impurity transport in plasma boundary Monte Carlo modeling... of particle trajectories through plasma background based on forces on impurity atoms... of reactions in the plasma (ionisation, neutralisation, chemistry)

4 What is DIVIMP ? LimitationsImprovements 2D Model (poloidal X-section) Toroidal symmetry ! Static plasma background----- Impurities are traces ! Outer most flux surface from target to targetExtended grids Gaps between grid and wall (S. Lisgo) Impurity generation FluxCalc/ProbCalc No sputtering by multiple plasma species (K. Schmid) No sputtering at walls (only target) Plasma facing wallERODEPDIF No multiple wall elements (K. Schmid) No wall material mixing No T-dep. effects (Sublimation...) No re-deposition

5 What is DIVIMP ? LimitationsImprovements 2D Model (poloidal X-section) Toroidal symmetry ! Static plasma background----- Impurities are traces ! Outer most flux surface from target to targetExtended grids Gaps between grid and wall (S. Lisgo) Impurity generation FluxCalc/ProbCalc No sputtering by multiple plasma species (K. Schmid) No sputtering at walls (only target) Plasma facing wallERODEPDIF No multiple wall elements (K. Schmid) No wall material mixing No T-dep. effects (Sublimation...) No re-deposition

6 Conceptual approach DIVIMP Materials properties databases Materials properties databases OEDGE (OSM) OEDGE (OSM) ERODEPDIF / Analytical models ERODEPDIF / Analytical models SOLPS (B2+Eirene) SOLPS (B2+Eirene) CARRE, recent codes CARRE, recent codes FluxCalc ProbCalc FluxCalc ProbCalc SDTrim Codes for "material side" Codes for "plasma side"

7 Conceptual approach DIVIMP Materials properties databases Materials properties databases Expected results: * Steady state wall concentrations & erosion fluxes * Plasma impurity concentrations Re-deposition matrix for each element Background plasma Diffusion Sublimation OEDGE (OSM) OEDGE (OSM) ERODEPDIF / Analytical models ERODEPDIF / Analytical models SOLPS (B2+Eirene) SOLPS (B2+Eirene) CARRE, recent codes CARRE, recent codes Grid FluxCalc ProbCalc FluxCalc ProbCalc Impurity generation SDTrim Phys. sputtering

8 Conceptual approach DIVIMP Materials properties databases Materials properties databases Re-deposition matrix for each element Background plasma Diffusion Sublimation OEDGE (OSM) OEDGE (OSM) ERODEPDIF / Analytical models ERODEPDIF / Analytical models SOLPS (B2+Eirene) SOLPS (B2+Eirene) CARRE, recent codes CARRE, recent codes Grid FluxCalc ProbCalc FluxCalc ProbCalc Impurity generation SDTrim Phys. sputtering

9 Conceptual approach DIVIMP Materials properties databases Materials properties databases Re-deposition matrix for each element Background plasma Diffusion Sublimation OEDGE (OSM) OEDGE (OSM) ERODEPDIF / Analytical models ERODEPDIF / Analytical models SOLPS (B2+Eirene) SOLPS (B2+Eirene) CARRE, recent codes CARRE, recent codes Grid FluxCalc ProbCalc FluxCalc ProbCalc Impurity generation SDTrim Phys. sputtering

10 Extended grid (EG) JET SG (Standard grid) JET SG (Standard grid) JET EG [1] (Extended grid) JET EG [1] (Extended grid) [1] By S. Lisgo

11 Extended grid (EG)

12 Conceptual approach DIVIMP Materials properties databases Materials properties databases Re-deposition matrix for each element Background plasma Diffusion Sublimation OEDGE (SOL22 option) OEDGE (SOL22 option) ERODEPDIF / Analytical models ERODEPDIF / Analytical models SOLPS (B2+Eirene) SOLPS (B2+Eirene) CARRE, recent codes CARRE, recent codes Grid FluxCalc ProbCalc FluxCalc ProbCalc Impurity generation SDTrim Phys. sputtering

13 ERODEPDIF [2] K. Schmid, Nucl. Fusion 48 (2008) p ERODEPDIF [2]: Looks iteratively for a flux balance solution No time evolution Treat komplex plasma-wall interactions and material evolution in a simplified way

14 ERODEPDIF [2] K. Schmid, Nucl. Fusion 48 (2008) p [3] K. Krieger et al, J. Nucl. Mat. 390–391 (2009) p. 110 ERODEPDIF [2]: Looks iteratively for a flux balance solution No time evolution Be-evaporation wall gap L-modehigh L-modelow H-modelow JET experimental data [3]: Integrated Be flux from e.g. outer divertor from Be II (527nm) JET experimental data [3]: Integrated Be flux from e.g. outer divertor from Be II (527nm) Treat komplex plasma-wall interactions and material evolution in a simplified way

15 New analytical model BulkReaction zone Background plasma Treat komplex plasma-wall interactions and material evolution in a simplified way Newly developed analytical model [4]: [4] Concept and implementation by K. Schmid, Nucl. Techn., 159/3, 2007, p. 238

16 New analytical model Bulk, z.B. CReaction zone BGP D, He, Ar Be, C, D, He, Ar Be, C C * Constant thickness * Variable composition (but homogeneous distribution) * Variable thickness * Constant composition Net deposition: Layer growth Net erosion [4] Concept and implementation by K. Schmid, Nucl. Techn., 159/3, 2007, p. 238 Treat komplex plasma-wall interactions and material evolution in a simplified way

17 New analytical model Bulk, z.B. CReaction zone BGP D, He, Ar Be, C, D, He, Ar Be, C C Net deposition: Layer growth Net erosion [4] Concept and implementation by K. Schmid, Nucl. Techn., 159/3, 2007, p. 238 Treat komplex plasma-wall interactions and material evolution in a simplified way Applicable to simple systems like Be & C Y Partial ~ C * Y Total Applicable to simple systems like Be & C Y Partial ~ C * Y Total * Constant thickness * Variable composition (but homogeneous distribution) * Variable thickness * Constant composition

18 Plasma Each tile receives a flux due to erosion & re-deposition from other tiles Plasma transport is characterized by a re-deposition matrix: Flux of material m on tile i: Solved as a 4n coupled differential equation system in Mathematica Bulk Reaction zone RESULT: Time evolution of the first wall ! First wall is subdivided into n-tiles New analytical model [4] Concept and implementation by K. Schmid, Nucl. Techn., 159/3, 2007, p. 238

19 First (simple) test case: 7 Wall tiles Constant D plasma flux in the range of m -2 s -1 Be & C erosion yields in % range Very simplified plasma transport (exp. distance decay) # 4 Initially pure Be Be buried by re-dep. C Be re-deposition #4 eroded Prove Of Principle of solver Initially pure C

20 Conceptual approach DIVIMP Materials properties databases Materials properties databases Re-deposition matrix for each element Background plasma Diffusion Sublimation OEDGE (SOL22 option) OEDGE (SOL22 option) ERODEPDIF / Analytical models ERODEPDIF / Analytical models SOLPS (B2+Eirene) SOLPS (B2+Eirene) CARRE, recent codes CARRE, recent codes Grid FluxCalc ProbCalc FluxCalc ProbCalc Impurity generation SDTrim Phys. sputtering

21 Concept: Re-deposition matrix by DIVIMP Lauch flux of Be impurity ions and map points of re-deposition (Charge resolved) Re-deposition matrix static BGP Bin

22 Re-deposition matrix (JET SG)

23 Promt re-deposition...

24 Re-deposition matrix (JET SG)

25 Most Be is re-deposited at the inner taget

26 Short term plans 1) Get EG and OEDGE running for both JET and ITER 2) Obtain re-deposition matrices for JET: Be, C ITER: Be, W 3) Compare SG and EG based calculations 4) Investigate the steady state wall compositions and impurity plasma concentrations JET SG + EG (Partly done) Be + C Background plasma: OEDGE, Experimental + Extrapolation JET SG + EG (Partly done) Be + C Background plasma: OEDGE, Experimental + Extrapolation ITER SG (Previously done) + EG Be migration (+ W Divertor) Background plasma: OEDGE ITER SG (Previously done) + EG Be migration (+ W Divertor) Background plasma: OEDGE Experimental data (K. Krieger) Validation Extrapolation

27

28

29

30

31

32 What is DIVIMP ? CARRE (SONNET) 2D Grid generator: Plasma current Magnetic field B2 (B2.5) Fluid code B. Braams, NY DIVIMP (MC): Impurity transport (Stangeby, Toronto) SOLPS 4.0 (5.0) OEDGE Onion skin model EDGE2DNIMBUS Modelling framework: EIRENE (MC) Neutral transport (Reiter, FZJ) EIRENE (MC) Neutral transport (Reiter, FZJ)

33 Grid ? Free gird (w/o cut with neutral wall) is modified by DIVIMP (requires a lot of manual input, automatic generation in progress) Grid extension to match the vessel geometry, so far manually customized Grid extension to match the vessel geometry, so far manually customized Standard grid (SG) directly from B2/Eirene: + PWI Interpolation of plasma parameters to the wall (lack of physics: linear) Overestimation of flux into divertor ! Standard grid (SG) directly from B2/Eirene: + PWI Interpolation of plasma parameters to the wall (lack of physics: linear) Overestimation of flux into divertor !

34 Standard grids : ITER (Divertor) Core Plasma SOL Flux Surfaces Separatrix Divertor Unrolled data structure: Core Plasma Flux Surfaces Divertor Separatrix SOL Background plasma Background plasma

35 Standard grids : ITER (Divertor) Background plasma Background plasma Core Plasma SOL Flux Surfaces Separatrix Divertor Unrolled data structure (B2-EIRENE):

36 Impurity transport Ionisation Recombination Thermalisation Ionisation Recombination Thermalisation Classic transport || B (gyro center motion) Friction force Thermal gradient force Electric force Classic transport || B (gyro center motion) Friction force Thermal gradient force Electric force Anomal diffusion B Wall / Divertor: Reflection, Deposition Wall / Divertor: Reflection, Deposition

37 What is FluxCalc / ProbCalc ? Problem: Impurity generation by impurities (Self sputtering of W !) Background plasma Grid Ion fluxes at grid edge CX-Flux at grid edge Neutral wall FluxCalc ProbCalc For every wall element: Te, Ti Ion flux (D, He, C) CX-flux (Energy & angle resolved) SDTrim (parameterized) Sputteryields For every wall element: Erosion flux Absolute wall launch probabilities of impurities ERODEPDIV + Redeposiotionmatrix ERODEPDIV + Redeposiotionmatrix

38 Summary Latest DIVIMP version (6 revision 41) working Modifications for coupling with ERODEPDIF Ability to calculate re-distribution matrices (Be for JET SG) Analytical solution for Be/C JET cases


Download ppt "Benchmarking DIVIMP-ERODEPDIF ITER predictions on material mixing using JET results M. Reinelt, K. Schmid, K. Krieger SEWG Meeting JET07.07.2009 Max-Planck-Institut."

Similar presentations


Ads by Google