Presentation is loading. Please wait.

Presentation is loading. Please wait.

Feasibility study on China‘s mercury-free catalyst R&D

Similar presentations

Presentation on theme: "Feasibility study on China‘s mercury-free catalyst R&D"— Presentation transcript:

1 Feasibility study on China‘s mercury-free catalyst R&D
Dr Sun Yangzhao FECO/ MEP/China October, 2011

2 Content PVC industry developments and mercury management status in China Project background and progress Mercury pollution control policies Difficulties and challenges Next steps

3 1.PVC production and mercury management in China
PVC plastic is widely used in industry, agriculture, national defense and chemical construction materials, etc in China. Chinese PVC production can be divided in two categories: carbide method and ethylene method. For the carbide route, CaC2 is used as raw material, and activated carbon with HgCl 2 serves as catalyst for the production of VCM which will be further used to make PVC. Table 1: PVC Data for China 2009 (Source MIIT, 2010) Type of Production # of Facilities PVC production (million tonnes) % of total production Carbide-based 94 5.8 63.4 Ethylene 10 3.35 36.6 Total 104 9.15

4 Mercury in carbide based process
Currently for one ton PVC produced in China: 1.2 kg of HgCl 2 catalyst consumed on average (as 11% of HgCl 2 content). For 5.8 million tons of PVC produced in 2009, around 7000 tons of mercury catalyst used, comprising: 770 tons of HgCl 2 and 570 tons of mercury were used (MIIT, 2010) Carbide-based PVC production consumes around 60% of China’s total annual mercury use.

5 Mercury flow chart in carbide PVC production
HCl composition acetylene process HCl C2H2 VC composition Compound absorption Compression distillation Monomer tank Hg bearing waste acid Hg remover Hg absorbed activated carbon worn catalyst potential mercury pollution source

6 Catalyst Effectiveness
Sublimation and intoxication causes reduction of catalyst effectiveness. When it decreases to certain level, catalyst need to be replaced and inactivated catalyst becomes worn catalyst. Usually waste catalyst contains 3-4.5% mercury. After Hg remover, part of the sublimated HgCl2 will enter the worn acid and alkali and get emitted.

7 Necessity of carbide process
Carbide PVC production uses lots of mercury, but it remains necessary: Chinese energy structure characterized as "lack oil, poor in gas and rich in coal" Ethylene method can hardly meet the need of PVC industry alone Carbide PVC industry pays high attention to mercury pollution administration.

8 Emission reduction measures for carbide PVC production
The industry has adopted the following measures to reduce mercury use and emissions: low mercury subsititute for high mercury one; activated carbon in mercury remover to absorb mercury in gas phase; waste acid recycled by desorption device, a few of which are used to neutralize worn alkali; waste alkali used to neutralize waste acid, and collected together with other waste liquid for central treatment; waste catalyst, activated carbon and other waste sludge are sent to certified orgnization for central treatment.

9 One Carbide-based PVC Producer

10 2. Project background and progress
UNEP has provided funds for China to carry out PVC project through small grants program. The project is now on its second phase. Phase I “Communication and Deliberation of the Practice of Mercury Use and Emission Reduction during PVC production” agreement was signed in January of 2009. Phase II “Feasibility study on China‘s mercury-free catalyst R&D ” agreement was signed in April of 2011.

11 Target and Research Results of Phase I
Phase 1 - Overall Target:To reduce mercury use in Chinese PVC industry Duration:From Jan to Sep. 2009 Activities and results: Organization of “Workshop on Mercury Reduction in Carbide PVC Production” Investigation and study on mercury use and reduction status in Chinese PVC production by acetylene Analysis of administrative and policy needs mercury use in this industry.

12 Target and Progress of Phase II
Phase 2 Overall Target - To promote mercury free catalyst development and use in VCM production. Implementation duration:April 2011-December 2011 Main activities: Organization of “Project workshop on Mercury free catalyst development feasibility”; Develop a feasibility study report on mercury-free catalyst research and development, including identification of near-term and long-term activities.

13 Project workshop on Mercury free catalyst development feasibility, 19-20 September 2011
Approximately 40 participants from Chinese government and industry, representatives from the international community Agenda: International mercury convention negotiation process China PVC industry update Updates of mercury-free catalyst R&D home and abroad Outcomes: Exchange of ideas on demands for and challenges to develop mercury-free catalyst technology. Expert team proposed draft criteria for a peer review process.

14 Wide-spread use of low Hg catalyst
time target 2012 50% use of low Hg catalyst per VCM production 25% less use of HgCl per ton of PVC at average whole industry realizes sound collection of worn Hg catalyst industrialization of efficient collection technology of VC composing gas phase 50% use of HCl deep desorption technology 2015 whole industry uses low Hg catalyst 50% less use of HgCl per ton of PVC at average 100% recycling of worn low Hg catalyst High efficient Hg recycling technology penetration rate of 50% over 90% penetration rate of HCl deep desorption technology 100% use of NaHS treatment for Hg bearing wast water By adoption of low Hg catalyst, mercury removal and centralized treatment of waste, producers are able to meet the national emission limit requirements.

15 Mercury free catalyst R&D progress
Currently, carbide PVC producers are working with research institutes on following research: to carry out acetylene VCM fluidized bed technology, i.e. mercury-free catalyst, supportive process, reactor. catalytic system of hydrogen chloride of acetylene to produce VCM; R&D of gas-liquid mercury-free catalyst. enterprise-based mercury-free catalyst R&D and engineering pilot platform is taking initial shape.

16 3. Relevant industry mercury pollution control policy
2007 – Industry restructuring directory list (2007) specifies HgCl2 catalyst under restricted category. Encourages oxychlorination of ethylene to replace carbide method; For new, modified or expanded PVC installation must reach the scale of over 300,000 tons a year. 2009 – MEP released clean production standards for chloralkali industry (carbide PVC), which specifies technological requirements to produce VCM in a clean manner. April 2011 – 12th Five Year Plan for Comprehensive prevention and control of heavy metal pollution was approved and promulgated by the State Council (applies to lead, mercury, cadmium, chromium and arsenic).

17 Clean Production Auditing Standard
2009 MEP Clean Production Standards for Chloralkali Industry (carbide PVC) Indicator Class 1 Class 2 Class 3 I. process and equipment requirement 1. For HCl desorption device use HCl deep desorption technoogy use HCl regular desorption technology 2. For mercury catalyst use low Hg and waste acid water treatment technology use low Hg catalyst technology 3.VC mercury recycling requirements VC mercury recycling treatment II. resource and energy use indicators Hg catalyst consumption per unit of product(kg/t) 1.2 1.3 1.4 III. Pollutant generation indicator (before end treatment) waste water generation per unit of product 12 35 40 THg per unit waste water(g/t) 1.5 1.8 2.0 Clean Production Auditing Standard

18 Notification requires:
Notification on Enhancing Hg Pollution Prevention and Control in Carbide PVC industry. Issued by MEP - January Purpose was to enhance pollution prevention and control management framework in carbide PVC production, Hg catalyst production and treatment of worn catalyst. Notification requires: Increased awareness of the importance of pollution control in carbide PVC production Promotion of low Hg catalyst and effective reduction of Hg emissions Tighter environmental management and strengthened monitoring measures Strengthened policy support and supportive measures Increased role of industry association in education and training.

19 Hg bearing waste management
Hg and Hg compound bearing waste or polluted waste are already listed into State Hazardous Waste List MEP is formulating Hg bearing pollutant prevention and control technical policy, which includes worn Hg catalyst.

20 Difficulties and Challenges Ahead
(1)Legislation and Enforcement inadequate force in industry restructuring as well as in promoting and applying new reduction technology and new material administrative weakness in mercury and HgCl2 catalyst production and supply production operation needs to be standardized. (2) Capacity basic situation and understanding is not clear lack of monitoring/surveillance of mercury discharge.

21 Difficulties and Challenges Ahead
(3)Technology Application of low-mercury technology needs to be further improved and researched Need of alternative techology: mercury-free catalyst is still under research and development economic and other effects of application need to be taken into consideration before wide-scale adoption. HCl desorption is only partly applied among enterprises.

22 Difficulties and Challenges Ahead
(4)Financing involves a wide range and large number of enterprises most enterprises are small-scale with limited profit margins alternative technologies are highly specialized and expensive. As a developing country, China is facing huge shortage of labor-power, material and financial power.

23 Next steps for Carbide based PVC Production
Phase1 (Jan 2010~Jan 2012) Activity 1:Raise understanding of mercury pollution risks amongst local environmental protection bodies and industry. Activity 2:Develop emission inventory. Activity 3:Study the evaluation and application standards of low-mercury and non-mercury catalyst. Activity 4:Set up reduction plan and targets across PVC industry. Phase 2(Jan. 2012~Dec.2013 Activity 5: Research mercury alternative technology and pilot application, apply mercury reduction measures and standardize administration. Activity 6: Initiate assessment and operation guidance for above.

24 Conclusion Although the Chinese central government has paid a lot of attention to mercury pollution prevention and control in the VCM sector, it is still facing a lot of difficulties and uncertainties with spreading information on the low-mercury catalyst and the researching & development of free-mercury catalyst. We hope for more support, including finance and technologies from developed countries!

25 Acknowledge Special thanks extended to the following:
Chemicals Branch, DTIE of UNEP Department of International Cooperation, MEP Department of Pollution Prevention and Control, MEP Chemical Registration Center, MEP China Petroleum and Chemical Industry Association

26 Thank you for your kind attention !

Download ppt "Feasibility study on China‘s mercury-free catalyst R&D"

Similar presentations

Ads by Google