Presentation is loading. Please wait.

Presentation is loading. Please wait.

ITK Deformable Registration

Similar presentations

Presentation on theme: "ITK Deformable Registration"— Presentation transcript:

1 ITK Deformable Registration
Finite Elements Methods

2 Open Source Disclaimer
Many of the slides in this talk were taken from the ITK course presented at MICCAI 2003 by Dr. James Gee (U. Penn) Brian Avants (U. Penn) Tessa Sundaram (U. Penn) Dr. Lydia Ng (AllenInstitue) Of course, any errors… are mine.

3 Deformable Registration
Finite Element Methods for Deformable Registration

4 Deformable Transformation
y y Transform x x Fixed Image Moving Image

5 Deformable Transformation
y y Transform x x Fixed Image Moving Image

6 Deformable Transformation
y x

7 Deformable Transformation
y x

8 FEM Grid y FEM Grid Resampling Grid x

9 FEM Grid y FEM Grid x

10 FEM Grid y FEM Grid Computed Deformation x

11 FEM Grid y FEM Grid Displacements Forces x

12 FEM Iterative Linear System
Finite Element Methods F Forces Vector N U Vector N Displacements K Regularization Matrix NxN

13 FEM Iterative Linear System
Finite Element Methods F K U F U = K

14 FEM Iterative Linear System
N = Number of Nodes N x N N N = K U F

15 FEM Iterative Linear System
Iteratively Solving a Linear System K U F = Linearization of a Physical Model Image based forces Node Displacements

16 FEM Energy Formulation
Find registration transformation that maximizes

17 FEM Energy Formulation
Benefits Intuitive; easier to express constraints Powerful numerical solutions available Optimality of solutions; easier to debug Limitations Difficult / overhead to implement

18 Deformable Registration
To solve the deformation, consider only displacements of the form

19 Deformable Registration
Linear Elements

20 Deformable Registration
α1 φ1 Element Shape Function

21 Deformable Registration
Element α2 φ2 Shape Function

22 Deformable Registration
α3 φ3 Element Shape Function

23 Deformable Registration
u α3 φ3 α1 φ1 Element α2 φ2 Shape Functions

24 Deformable Registration
Higher Order Elements

25 Deformable Registration
α1 φ1 Element Shape Function

26 Deformable Registration
α4 φ4 Element Shape Function

27 Deformable Registration
Element α2 φ2 Shape Function

28 Deformable Registration
φ5 α5 Element Shape Function

29 Deformable Registration
α3 φ3 Element Shape Function

30 Deformable Registration
φ6 α6 Element Shape Function

31 Deformable Registration
α4 φ4 u α3 φ3 α1 φ1 α6 φ6 Element α5 φ5 α2 φ2 Shape Functions

32 Deformable Registration
Substitute uh into E, then minimizing with respect to αi:

33 BSplines Grid & Image Grid
Calculation are made in an Element by Element basis

34 BSplines Grid & Image Grid
Elements are connected at Nodes at which the displacement is solved

35 BSplines Grid & Image Grid
Efficiency is gained by elemental computation

36 BSplines Grid & Image Grid
Domain subdivision (Mesh) can be tailored to the underlying geometry of the image.

37 FEM Solver Start Iteration Loop Begin Loop by making physical assumptions and then taking the derivative of the similarity metric. End loop when the solution stabilizes. Physical Assumptions New Solution Solve Image Metric Derivative End Iteration Loop

38 K U F FEM Solver Start Iteration Loop Physical Assumptions Solve
New Solution Solve U Image Metric Derivative F End Iteration Loop

39 If ( Unew – Uold) < ε then Stop
FEM Solver Start Iteration Loop K Unew U F K F U = If ( Unew – Uold) < ε then Stop

40 KU=F in Code itk::FEMRegistrationFilter::IterativeSolve()
itk::FEMSolver::AssembleK() FEMSolver :: AddSolution() FEMSolver:: Solve() FEMSolver::AssembleF() calls FEMImageMetricLoad::Fe()

41 FEM-Based Registration Options
Element Type Triangles Quadrilaterals Hexahedra Tetrahedra

42 FEM-Based Registration Options
Continuum / Physical Model Linear elasticity Membrane Other specialized

43 FEM-Based Registration Options
Mesh geometry Uniform grid vs. adaptive Anatomy-specific mesh

44 FEM-Based Registration Options
Metric Mean square Normalized cross-correlation Mutual information Pattern intensity

45 Introduction to the ITK Finite Element Library
ITK FEM Library Introduction to the ITK Finite Element Library

46 ITK FEM Library Library for solving general FEM problems
Object oriented C++ classes are used to specify the geometry and behavior of the elements apply external forces and boundary conditions solve problem and post-process the results

47 ITK FEM Library Applications Mechanical modeling Image registration

48 FEM Basics Mesh Loads Boundary conditions Nodes Elements
Points in space where solutions are obtained Elements e.g., 2-D triangular elements Loads e.g., gravity (body) load Boundary conditions e.g., nodes fixed in space

49 ITK FEM Elements Core of the library is the Element class
Code is in two functionally independent parts Geometry and Physics Arbitrarily combined to create new elements Problem domain is specified by a mesh Geometry Physics

50 Loads Classes that apply external forces (loads) to elements
Various types Easily extensible

51 Solvers Provide functionality to obtain and process the solution
Different solution methods  different solver classes Static problems Time dependent - dynamic problems

52 Solvers Use linear system wrappers to link FEM classes to an external numeric library Any numeric library can be used to solve the systems of linear equations in FEM problems VNL and ITPACK currently supported

53 Setting Up a FEM Problem
Four-step process Select element classes Discretize problem domain Specify boundary conditions Specify/Apply external loads Two options Directly  create proper objects in code Indirectly  read object definitions from a file

54 Deformable Registration
FEM-Base Registration Parameters

55 Parameter File : Part 1 % % Parameters for the single- or multi-resolution techniques 1 % Number of levels in the multi-resolution pyramid (1 = single-res) 1 % Highest level to use in the pyramid 1 1 % Scaling at lowest level for each image dimension 8 % Number of pixels per element 1.e5 % Elasticity (E) 1.e4 % Density (RhoC) 1. % Image energy scaling 4 % NumberOfIntegrationPoints 1 % WidthOfMetricRegion 25 % MaximumIterations % % Parameters for the registration % Similarity metric (0=mean sq, 1=ncc, 2=pattern int, 3=MI) % Alpha % DescentDirection % DoLineSearch (0=never, 1=always, 2=if needed) 1.e1 % TimeStep 1.e-15 % Energy Reduction Factor

56 Parameter File : Part 2 % ----------------------------------
% Information about the image inputs % ImageDimension % Nx (image x dimension) % Ny (image y dimension) % Nz (image z dimension - not used if 2D) brain_slice1.mhd % ReferenceFileName brain_slice1warp.mhd % TargetFileName % % The actions below depend on the values of the flags preceding them. % For example, to write out the displacement fields, you have to set % the value of WriteDisplacementField to 1. % UseLandmarks? % LandmarkFileName brain_result % ResultsFileName (prefix only) % WriteDisplacementField? brain_disp % DisplacementsFileName (prefix only) % ReadMeshFile? brain_mesh.fem % MeshFileName END

57 Configuring Parameters #1
this->DoMultiRes(true); this->m_NumLevels = nlev; this->m_MaxLevel = mlev; for (jj=0; jj < ImageDimension; jj++) { m_ImageScaling[jj] = dim; } for (jj=0; jj < this->m_NumLevels; jj++) { this->m_MeshPixelsPerElementAtEachResolution(jj) = p; this->SetElasticity(e, jj); this->SetRho(p, jj); this->SetGamma(g, jj); this->SetNumberOfIntegrationPoints(ip, jj); this->SetWidthOfMetricRegion(w, jj); this->SetMaximumIterations(mit, jj);

58 Configuring Parameters #2
this->SetDescentDirectionMinimize(); or this->SetDescentDirectionMaximize(); this->DoLineSearch( n ); // n = 0, 1, 2 this->SetTimeStep( t ); this->SetEnergyReductionFactor( fbuf );

59 Configuring Parameters #3
this->m_ImageSize[0] = xdim; this->m_ImageSize[1] = ydim; if (dim == 3) this->m_ImageSize[2] = zdim; this->SetReferenceFile( imgfile1 ); this->SetTargetFile( imgfile2 ); this->UseLandmarks( true ); this->SetLandmarkFile( lmfile ); this->SetResultsFile( resfile ); this->SetWriteDisplacements( true ); this->SetDisplacementsFile( dispfile ); this->m_ReadMeshFile = true; this->m_MeshFileName = meshfile;

60 Deformable Registration
FEM-Based Registration: Writing the Code ../ Insight / Examples / Registration / DeformableRegistration1.cxx

61 Header Declarations #include "itkImageFileReader.h"
#include "itkImageFileWriter.h“ #include "itkFEM.h" #include “itkFEMRegistrationFilter.h"

62 Type Definitions typedef itk::Image< unsigned char, 2 > fileImageType; typedef itk::Image< float, 2 > ImageType; typedef itk::fem::Element2DC0LinearQuadrilateralMembrane ElementType; typedef itk::fem::Element2DC0LinearTriangularMembrane ElementType2; typedef itk::fem::FEMRegistrationFilter< ImageType, ImageType > RegistrationType;

63 Registering Objects ElementType::LoadImplementationFunctionPointer fp1 = & itk::fem::ImageMetricLoadImplementation< ImageLoadType >::ImplementImageMetricLoad; DispatcherType::RegisterVisitor( (ImageLoadType*)0 , fp1 ); ElementType2::LoadImplementationFunctionPointer fp2 = & itk::fem::ImageMetricLoadImplementation< ImageLoadType >::ImplementImageMetricLoad; DispatcherType2::RegisterVisitor( (ImageLoadType*)0 , fp2 );

64 Input / Output RegistrationType::Pointer registration = RegistrationType::New(); registration->SetConfigFileName( paramname ); registration->ReadConfigFile();

65 Material and Element Setup
// Create the material properties itk::fem::MaterialLinearElasticity::Pointer m; m = itk::fem::MaterialLinearElasticity::New(); m->GN = 0; m->E = registration->GetElasticity(); m->A = 1.0; // Cross-sectional area m->h = 1.0; // Thickness m->I = 1.0; // Moment of inertia m->nu = 0.; // Poisson's ratio m->RhoC = 1.0; // Density // Create the element type ElementType::Pointer e1 = ElementType::New(); e1->m_mat= dynamic_cast< itk::fem::MaterialLinearElasticity* >( m ); registration->SetElement( e1 ); registration->SetMaterial( m );

66 Running the Registration
registration->RunRegistration(); registration->WriteWarpedImage(); if ( registration->GetWriteDisplacements() ) { registration->WriteDisplacementField( 0 ); // x registration->WriteDisplacementField( 1 ); // y registration->WriteDisplacementFieldMultiComponent(); }

67 FEM - Deformable Registration
Example #1

68 Fixed Image

69 Moving Image

70 Registered Image

71 Registered Image

72 FEM - Deformable Registration
Example #2

73 Fixed Image

74 Moving Image

75 Registered Image

76 Registered Image

77 FEM - Deformable Registration
Example #3

78 Fixed Image

79 Moving Image

80 Registered Image

81 Registered Image

82 FEM - Deformable Registration
Example #4 Elasticity value was doubled

83 Fixed Image

84 Moving Image

85 Registered Image

86 Registered Image

87 Enjoy ITK !

Download ppt "ITK Deformable Registration"

Similar presentations

Ads by Google