Download presentation

Published byAugusta Robertson Modified over 4 years ago

1
Antoine Lavoisier, Joseph Priestly, Marie Curie, Dmitri Mendeleev, John Dalton,

2
**Physical States of Matter**

What is Matter? Matter: Anything that occupies space and has mass Energy: Ability to do work, accomplish a change Physical States of Matter Gas: Indefinite volume, indefinite shape, particles far away from each other Liquid: Definite volume, indefinite shape, particles closer together than in gas Solid: Definite volume, definite shape, particles close to each other

3
Properties of Matter Property: Characteristic of a substance Each substance has a unique set of properties identifying it from other substances. Intensive Properties: Properties that do not depend on quantity of substance Examples: boiling point, density Extensive Properties: Properties that depend on or vary with the quantity of substance Examples: mass, volume

4
Physical Properties: Properties of matter that can be observed without changing the composition or identity of a substance Example: Size, physical state Chemical Properties: Properties that matter demonstrates when attempts are made to change it into new substances, as a result of chemical reactions Example: Burning, rusting

5
Changes in Matter Physical Changes: Changes matter undergoes without changing composition Example: Melting ice; crushing rock Chemical Changes: Changes matter undergoes that involve changes in composition; a conversion of reactants to products Example: Burning match; fruit ripening

6
Classifying Matter Pure substance: Matter that has only 1 component; constant composition and fixed properties Example: water, sugar Element: Pure substance consisting of only 1 kind of atom (homoatomic molecule) Example: O2 Compound: Pure substance consisting of 2 or more kinds of atoms (heteroatomic molecules) Example: CO2

7
Mixture: A combination of 2 or more pure substances, with each retaining its own identity; variable composition and variable properties Example: sugar-water Homogenous matter: Matter that has the same properties throughout the sample Heterogenous matter: Matter with properties that differ throughout the sample Solution: A homogenous mixture of 2 or more substances (sugar-water, air)

8
Measurement Systems Measurement: Determination of dimensions, capacity, quantity or extent of something; represented by both a number and a unit Examples: Mass, length, volume, energy, density, specific gravity, temperature Mass vs. Weight Mass: A measurement of the amount of matter in an object Weight: A measurement of the gravitational force acting on an object

9
**Density: mass divided by volume; d = m/v**

Specific gravity: density of a substance relative to the density of water

10
**English System Units: Inch, foot, pound, quart**

11
**Metric System: Meter, gram, liter**

12
Unit of Length Meter = basic unit of length, approximately 1 yard 1 meter = 1.09 yards Kilometer = 1000 larger than a meter Centimeter = 1/100 of a meter 100 cm = 1 meter Millimeter = 1/1000 of a meter 1000 mm = 1 meter

13
Unit of Mass Gram: basic unit of mass 454 grams = 1 pound Kilogram: times larger than a gram 1 Kg = 2.2 pounds Milligram: 1/1000 of a gram Unit of Volume Liter: basic unit of volume 1 Liter = 1.06 quarts 1 Liter = 10 cm x 10 cm x 10 cm 1 liter = 1000 cm3 1 ml = 1 cm3 (1 cc)

14
Unit of Energy Joule: Basic unit of energy calorie: amount of heat energy needed to increase temperature of 1 g of water by 1oC 1 cal = 4 joules Nutritional calorie = 1000 calories = 1 kcal = 1 Calorie Units of Temperature Fahrenheit: -459oF (absolute zero) - 212oF (water boils) Celsius: -273oC (absolute zero) - 100oC (water boils) Kelvin: 0K (absolute zero) K (water boils)

15
**Different Temperature Scales**

16
**Scientific Notation and Significant Figures**

Converting Celsius and Fahrenheit: oC = 5/9 (Fo - 32) oF = 9/5 (oC) +32 Converting Celsius and Kelvin: oC = K K = oC + 273 Scientific Notation and Significant Figures Scientific notation: a shorthand way of representing very small or very large numbers Examples: 3 x 102, 2.5 x 10-4

17
The exponent is the number of places the decimal must be moved from its original position in the number to its position when the number is written in scientific notation If the exponent is positive, move the decimal to the right of the standard position Example: x 102 450 3.72 x 105 372,000 If the exponent is negative, move the decimal to the left of the standard position Example: 9.2 x 10-3 .0092

18
**Practice with Scientific Notation**

50,000 = 5.0 x = = 4.5 x = 3.00 x 102 5 x 10-4

19
**Rules for Determining Significance:**

Significant Figures Significant Figures: Numbers in a measurement that reflect the certainty of the measurement, plus one number representing an estimate Example: 3.27cm Rules for Determining Significance: All nonzero digits are significant Zeroes between significant digits are significant Example: 205 has 3 significant digits 1,006 has 10,004 has 4 sig. figs. 5 sig. figs.

20
**Leading zeroes are not significant**

Example: has 2 significant digits has 3 significant digits Trailing zeroes are significant only if there is a decimal point in the number Examples: has 3 significant figures 2.0 has 2 significant digits 20 has 1500 1.500 4 sig. figs. 1 sig. fig. 2 sig. figs. 4 sig. figs.

21
**Calculations and Significant Figures**

Answers obtained by calculations cannot contain more certainty (significant figures) than the least certain measurement used in the calculation Multiplication/Division: The answers from these calculations must contain the same number of significant figures as the quantity with the fewest significant figures used in the calculation Example: x = Round to how many sig. figs.? Final answer: 3 59.9

22
Addition/Subtraction: The answers from these calculations must contain the same number of places to the right of the decimal point as the quantity in the calculation that has the fewest number of places to the right of the decimal Example: = 20.55 How many sig. figs.required? Final answer: Rounding Off Rounding off: a way reducing the number of significant digits to follow the above rules 1 20.6

23
Rules of Rounding Off: Determine the appropriate number of significant figures; any and all digits after this one will be dropped. If the number to be dropped is 5 or greater, all the nonsignificant figures are dropped and the last significant figure is increased by 1 If the number to be dropped is less than 5, all nonsignificant figures are dropped and the last significant figure remains unchanged Example: (with the appropriate number of sig. figs. determined to be 2) 4.287 4.3

24
**We only use significant figures when dealing with inexact numbers**

Exact (counted) numbers: numbers determined by definition or counting Example: 60 minutes per hour, 12 items = 1 dozen Inexact (measured) numbers: numbers determined by measurement, by using a measuring device Example: height = 1.5 meters, time elapsed = 2 minutes

25
Practice: Classify each of the following as an exact or a inexact number. A. A field is 100 meters long. B. There are 12 inches in 1 foot. C. The current temperature is 20o Celsius. D. There are 6 hats in the closet. Inexact Exact Inexact Exact

26
**Calculating Percentages**

percent = “per hundred” % = (part/total) x 100 Example: 50 students in a class, 10 are left-handed. What percentage of students are lefties? % lefties = (# lefties/total students) x 100 = 10/50 x 100 = .2 x 100 = 20%

27
**Practice Using and Converting Units in Calculations**

Sample calculation: Convert 125m to yards. Write down the known or given quantity (number and unit) 125 m Leave some blank space and set the known quantity equal to the unit of the unknown quantity 125 m = yards Multiply the known quantity by the factor(s) necessary to cancel out the units of the known quantity and generate the units of the unknown quantity 125 m x 1.09 yards/1 m = yards

28
**Once the desired units have been achieved, do the necessary arithmetic to produce the final answer**

125 x 1.09 yards /1 = yards Determine appropriate amount of sig. figs. and round accordingly Fewest sig. figs. in original problem is 3 (from 125), so final answer is 136 yards

29
Accuracy vs. Precision Error: difference between true value and our measurement Accuracy: degree of agreement between true value and measured value Uncertainty: degree of doubt in a measurement Precision: degree of agreement between replicated measurements

Similar presentations

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google