Download presentation

Presentation is loading. Please wait.

Published byJeremiah Maldonado Modified over 2 years ago

1
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [UWB Channel Model for Indoor Residential Environment] Date Submitted: [16 September, 2004] Source: [Chia-Chin Chong, Youngeil Kim, SeongSoo Lee] Company [Samsung Advanced Institute of Technology (SAIT)] Address [RF Technology Group, Comm. & Networking Lab., P. O. Box 111, Suwon , Korea.] Voice:[ ], FAX: [ ], Re: [Response to Call for Contributions on IEEE a Channel Models] Abstract:[This contribution describes the UWB channel measurement results in indoor residential environment based in several types of high-rise apartments. It consists of detailed characterization of both the large-scale and small-scale parameters of the channel such as frequency-domain parameters, temporal- domain parameters, small-scale amplitude statistics and S-V clustering multipath channel parameters of the UWB channel with bandwidth from 3 to 10 GHz.] Purpose:[Contribution towards the IEEE a Channel Modeling Subgroup.] Notice:This document has been prepared to assist the IEEE P It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release:The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P

2
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 2 UWB Channel Model for Indoor Residential Environment Chia-Chin Chong, Youngeil Kim, SeongSoo Lee Samsung Advanced Institute of Technology (SAIT), Korea

3
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 3 Outline Measurement Setup & Environment Data Analysis & Post-Processing Measurement Results Large-Scale Parameters Small-Scale Parameters Conclusion

4
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 4 Measurement Setup (1) Frequency domain technique using VNA –Center frequency, f c : 6.5GHz –Bandwidth, B : 7GHz (i.e. 3-10GHz) –Delay resolution, : 142.9ps (i.e. =1/B) –No. frequency points, N : 1601 –Frequency step, f : 4.375MHz (i.e. f=B/(N-1)) –Max. excess delay, max : 229.6ns (i.e. max =1/ f) –Sweeping time, t sw : 800ms –Max. Doppler shift, f d,max : 1.25Hz (i.e. f d,max =1/t sw )

5
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 5 Measurement Setup (2) UWB planar dipole antennas Measurement controlled by laptop with LabVIEW via GPIB interface Calibration performed in an anechoic chamber with 1m reference separation Static environment during recording Both large-scale & small-scale measurements –Large-scale: different RX positions local point –Small-scale: 25 (5x5) grid-measurements around each local point spatial point –At each spatial point, 30 time-snapshots of the channel complex frequency responses are recorded

6
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 6 Power Amplifier (Agilent 83020A) Vector network analyzer (Agilent 8722ES) Low Noise Amplifier (Miteq AFS5) Measurement Setup (3) Attenuator (Agilent 8496B) Propagation Channel Coaxial Cables Laptop with LabVIEW GPIB Interface TX antenna RX antenna

7
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 7 UWB Planar Dipole Antenna

8
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 8 Measurement Environment Measurements in various types of high-rise apartments based on several cities in Korea typical types in Asia countries like Korea, Japan, Singapore, Hong Kong, etc. –3-bedrooms (Apart1) –4-bedrooms (Apart2) Both LOS and NLOS configurations TX-RX antennas: –Separations: up to 20m –Height: 1.25m (with ceiling height of 2.5m) –TX antenna: always fixed in the center of the living room –RX antenna: moved around the apartment (i.e locations) 12,000 channel complex frequency responses are collected (i.e. 2 apartments x 8 RX local points x 25 spatial points x 30 time snapshots 2x8x25x30=12,000)

9
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 9 3-Bedroom Apartment Grid-Measurement

10
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 10 4-Bedroom Apartment

11
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 11 Data Analysis & Post-Processing All measurement data are calibrated with the calibration data measured in anechoic chamber to remove effect of measurement system Perform frequency domain windowing to reduce the leakage problem Complex passband IFFT is deployed to transform the complex frequency response to complex impulse response Perform temporal domain binning before extract channel parameters

12
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 12 Channel Model Description Large-Scale Parameters: –Path loss and Shadowing –Frequency Decaying Factor Small-Scale Parameters: –Temporal Domain Parameters –S-V Multipath Channel Parameters –Small-Scale Amplitude Statistics

13
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 13 Path Loss and Shadowing Path loss (PL) vs. Distance (d): –d 0 = 1m –PL 0 : intercept –n : path loss exponent –S : Shadowing fading parameter Perform linear regression to the above equation with measured data to extract the required parameters

14
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 14 Path Loss vs. Distance – LOS

15
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 15 Path Loss vs. Distance – NLOS

16
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 16 Frequency Decaying Factor Path loss (PL) vs. Frequency (f): or (Method 1) (Method 2)

17
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 17 Frequency Decaying Factor – LOS

18
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 18 Frequency Decaying Factor – NLOS

19
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 19 Large-Scale Parameters

20
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 20 Temporal Domain Parameters These parameters were obtained after taking frequency domain Hamming windowing, passband IFFT & temporal domain binning

21
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 21 S-V Multipath Channel (1) Saleh-Valenzuela (S-V) channel model is given by –L : number of clusters l th cluster –K l : number of MPCs within the –a k,l : multipath gain coefficent of the k th component in l th cluster –T l : delay of the l th cluster – k,l : delay of the k th MPC relative to the to the l th cluster arrival time

22
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 22 S-V Multipath Channel (2) Cluster arrival times Poisson distribution Ray arrival times Poisson distribution – : mean cluster arrival rate – : mean ray arrival rate

23
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 23 S-V Multipath Channel (3) Average power of a MPC at a given delay, T l + k,l – : expected value of the power of the first arriving MPC – : cluster decay factor – : ray decay factor

24
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 24 Cluster Decay Factor, – LOS

25
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 25 Cluster Decay Factor, – NLOS

26
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 26 Ray Decay Factor, – LOS

27
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 27 Ray Decay Factor, – NLOS

28
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 28 Cluster Arrival Rate, – LOS

29
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 29 Cluster Arrival Rate, – NLOS

30
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 30 Ray Arrival Rate, – LOS

31
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 31 Ray Arrival Rate, – NLOS

32
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 32 Mixture Poisson Distribution Fitting the ray arrival times to a mixture of 2 Poisson distributions similar to [1]: – : mixture probability – 1 & 2 : ray arrival rates

33
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 33 Mixture Poisson Distributions – LOS

34
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 34 Mixture Poisson Distributions – NLOS

35
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 35 Number of Clusters

36
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 36 Number of MPCs per Cluster

37
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 37 S-V Multipath Channel Parameters

38
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 38 Small-Scale Amplitude Statistics Comparison of empirical path amplitude distribution with the following five commonly used theoretical distributions: –Lognormal –Nakagami –Rayleigh –Ricean –Weibull The goodness-of-fit of the received signal amplitudes is evaluated using Kolmogorov-Smirnov (K-S) test & Chi-Square ( 2 ) test with 5% and 10% significance level, respectively.

39
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 39 Goodness-of-Test: LOS

40
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 40 Goodness-of-Test: NLOS

41
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 41 CDF of Path Amplitude – LOS

42
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 42 CDF of Path Amplitude – NLOS

43
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 43 Small-Scale Amplitude Statistics Parameters The results demonstrate that lognormal, Nakagami and Weibull fit the measurement data well. Parameters of these distributions (i.e. standard deviation of lognormal PDF, m-parameter of Nakagami PDF and b-shape parameter of Weibull PDF) can be modeled by a lognormal distribution, respectively These parameters are almost constant across the excess delay

44
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 44 Standard Deviation of Lognormal PDF – LOS

45
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 45 Standard Deviation of Lognormal PDF – NLOS

46
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 46 m-Nakagami Parameter – LOS

47
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 47 m-Nakagami Parameter – NLOS

48
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 48 b-Weibull Parameter – LOS

49
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 49 b-Weibull Parameter – NLOS

50
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 50 Variations of Lognormal- with Delay – LOS

51
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 51 Variations of Lognormal- with Delay – NLOS

52
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 52 Variations of Nakagami-m with Delay – LOS

53
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 53 Variations of Nakagami-m with Delay – NLOS

54
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 54 Variations of Weibull-b with Delay – LOS

55
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 55 Variations of Weibull-b with Delay – NLOS

56
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 56 Small-Scale Amplitude Statistics Parameters

57
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 57 Conclusion Frequency domain technique UWB measurement campaign has been carried out in indoor residential environment (high-rise apartments) covering frequencies from 3-10 GHz. Measurement covered both LOS & NLOS scenarios. Channel measurement results and parameters which characterize both the large-scale and small-scale parameters of the channel are reported.

58
doc.: IEEE a Submission September 2004 Chia-Chin Chong, Samsung (SAIT)Slide 58 Reference 1.B. Kannan et. al., Characterization of UWB Channels: Small- Scale Parameters for Indoor and Outdoor Office Environment, IEEE a, July 2004.

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google