Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Introduction vid-filtering-0710-v04.pdfhttp://www.ieee802.org/1/files/public/docs2010/liaison-nfinn-split-horizon-

Similar presentations


Presentation on theme: "1 Introduction vid-filtering-0710-v04.pdfhttp://www.ieee802.org/1/files/public/docs2010/liaison-nfinn-split-horizon-"— Presentation transcript:

1 1 Introduction vid-filtering-0710-v04.pdfhttp://www.ieee802.org/1/files/public/docs2010/liaison-nfinn-split-horizon- vid-filtering-0710-v04.pdf describes in pages 19 and 20 the Optimal distribution of data: Non-802.1aq and Using VIDs for manually configured optimum data distribution. The following slides expand the description in those two pages: Slide 2 adds the information in page 20 into the figure in page 19 and it illustrates the internal configuration of node B1 with the I and V Relay-VIDs and the VID translation at the egress ports Slide 3 introduces a VLAN with two domains interconnected by node B2. Slide 4 describes that two internal domain VIDs (Ia, Ib) are to be used in this case. It illustrates which Relay-VIDs are registered at each output port, which VID translation at egress ports is required and which VID values are used on the links between the nodes. Slide 5 extend the single domain case and illustrates that with the use of VID translation at the ingress ports in the domain it is possible to use different VID values on each of the inner domain links. Slide 6 extends the two domain case and illustrates that with the use of VID translation at the ingress ports in each domain it is possible to use different VID values on each of the inner domain links. Slides 7 and 8 illustrate the location of MEP and MIP functions in these two cases Slide 9 presents my understanding of the application of this model to (H)VPLS in MPLS networks.

2 2 B1 B2 B3 P21 P23 P32 P31 P13 P12 P10 P20 P30 C12 C2 C3 B1 B2 B3 V V I V I I V V V C12 C2 C3 V V V,I V X: External VID X: Internal Relay-VID V I X Y, Y X : Relay-VID X to VID Y Translation at egress port I V V I I V V I I V SVL C11 I V I V I V I V V V I I P11 V V,I I V P13 P12 P10 P11 E-LAN (I) I I I VLAN has common VID value I on the inner links B1-B2, B2-B3 and B3-B1 SVL: Shared VLAN Learning VLAN has 2 Relay-VID values I and V which operate in SVL mode VID Translation at egress port

3 3 B1 B2 B3 P21 P23 P32 P31 P13 P12 P10 P20 P30 C12 C2 C3 C52 C11 C51 P11 E-LAN (II) B4B5 P24 P25 P52 P54 P42 P45 P50 P40 C4 P55 VLAN has two domains with a full mesh of links

4 4 B1 B2 B3 C12 C2 C3 C52 C11 C51 E-LAN (II) B4B5 C4 B2 Ia V SVL Ia V Ib V Ia V V Ib P23 P24 P20 P21 V,Ib Ia V V V V V,Ia V,Ia,Ib V,Ia V Ia V V,Ib Ia V Ia Ia V V Ia V Ia,Ib V V,I I V V,Ib V V V,Ib Ia Ib V V V V,Ib V V V V V,Ia Ib Ib V,Ia V,Ib V Ib Ib V V,Ib Ib V Ib Ib V V,Ib Ia Ib P25 Ib V Ia V Ib V Ia Ib VLAN has common VID value Ib on the inner links B2-B4, B4-B5 and B5-B2 VLAN has common VID value Ia on the inner links B1-B2, B2-B3 and B3-B1 VLAN in Node B2 has 3 Relay- VID values Ia, Ib and V which operate in SVL mode VID Translation at egress port X: External VID X: Internal Relay-VID X Y, Y X : Relay-VID X to VID Y Translation at egress port SVL: Shared VLAN Learning

5 5 B1 B2 B3 P21 P23 P32 P31 P13 P12 P10 P20 P30 C12 C2 C3 B1 B2 B3 V V R V Q P V V V C12 C2 C3 V V V,I V I R V R X Y, Y X : Relay-VID X to VID Y Translation at egress port I V I P V P I Q V Q P I P V Q I Q V R I R V V I I V SVL C11 I V I V R V Q V V V Q R P11 V V,I I V P13 P12 P10 P11 E-LAN (III) X Y, Y X : VID Y to Relay-VID X Translation at ingress port R I Q I R Q P VID Translation at egress port VID Translation at ingress port VLAN has different VID values P, Q and R on the inner links B1-B2, B2-B3 and B3-B1 X: External VID X: Internal Relay-VID SVL: Shared VLAN Learning

6 6 B1 B2 B3 C12 C2 C3 C52 C11 C51 E-LAN (IV) B4B5 C4 B2 Ia V SVL Ia V L V R V V P R L P23 P24 P20 P21 V,Ib R Q P V V V V V,I V,Ia,Ib V,I V I V V I V Ia,Ib V V,I I V V,Ib V V M L K V V V V V V V Ib L V,Ia L K Ib K V,Ia V,I V I V K V MM V L V V,I I V Ib I V V,I R Ib P25 Ib V L Ia P V P Ib K V K Ia K VID Translation at egress port VLAN has different VID values P, Q and R on the inner links B1-B2, B2-B3 and B3-B1 VLAN has different VID values K, L and M on the inner links B2-B4, B4-B5 and B5-B2 Ia R V,Ib R Ia P V,Ib P I Q V Q P I P V Q I Q V R I R V P Ia R L Ib K Ia VID Translation at ingress port X: External VID X: Internal Relay-VID X Y, Y X : Relay-VID X to VID Y Translation at egress port SVL: Shared VLAN Learning X Y, Y X : VID Y to Relay-VID X Translation at ingress port

7 7 MEPs and MIPs in these E-LAN cases Looking at the models of Nodes B1 and B2 I am wondering where we have to place the MEP and MIP functions Most logical location of the MEP and MIP functions is at the edge of the yellow ellipses; this minimizes the number of MEP and MIP instances to one UP MEP+MIP+DOWM MEP set per port B1 I V SVL I V I V R V Q V V V Q R P13 P12 P10 P11 R I Q I B2 Ia V SVL Ia V Ib V Ia V V Ib P23 P24 P20 P21 Ib Ia Ib P25 Ib V Ia V Ib V Ia Ib

8 8 B2 Ia V SVL Ia V L V R V V P R L P23 P24 P20 P21 Ib R P25 Ib V L Ia P V P Ib K V K Ia K P R L Ib K Ia B1 I V SVL I V I V R V Q V V V Q R P13 P12 P10 P11 R I Q I MEPs and MIPs in these E-LAN cases Same two nodes, now with VID Translation at some of the ingress ports V V Q R

9 9 E-LAN in MPLS (VPLS, HVPLS) Same model can be deployed for E-LAN support in MPLS; i.e. VPLS and HVPLS External VID is to be replaced by PW label, and VLAN Tag is to be replaced by PW Label Stack Entry header PW label values might be different in the two directions For such case the PWlabel-to-RelayVID and RelayVID-to-PWlabel translations will use the different PW label values Relay-VID is represented by means of a VSI n VSIs (n2) are part of a Shared VSI Learning (SVL) group

10 10 E-Tree To be added in v02


Download ppt "1 Introduction vid-filtering-0710-v04.pdfhttp://www.ieee802.org/1/files/public/docs2010/liaison-nfinn-split-horizon-"

Similar presentations


Ads by Google