Presentation is loading. Please wait.

Presentation is loading. Please wait.

Copyright © 2009 Pearson Education, Inc. Chapter 26 DC Circuits.

Similar presentations


Presentation on theme: "Copyright © 2009 Pearson Education, Inc. Chapter 26 DC Circuits."— Presentation transcript:

1 Copyright © 2009 Pearson Education, Inc. Chapter 26 DC Circuits

2 Copyright © 2009 Pearson Education, Inc. 26-2 Resistors in Series and Parallel Example 26-8: Analyzing a circuit. A 9.0-V battery whose internal resistance r is 0.50 Ω is connected in the circuit shown. (a) How much current is drawn from the battery? (b) What is the terminal voltage of the battery? (c) What is the current in the 6.0-Ω resistor?

3 Copyright © 2009 Pearson Education, Inc. Multiple configurations Assume that in each circuit the battery gives 12 V and each resistor has a resistance of 4 ohms. In which circuit does the largest current flow through the battery? (e) All equal

4 Copyright © 2009 Pearson Education, Inc. Multiple configurations Assume that in each circuit the battery gives 12 V and each resistor has a resistance of 4 ohms. In which circuit does the largest current flow through the battery? What is that current?

5 Copyright © 2009 Pearson Education, Inc. Multiple configurations Assume that in each circuit the battery gives 12 V and each resistor has a resistance of 4 ohms. In which circuit does the largest current flow through the battery? What is that current?

6 Copyright © 2009 Pearson Education, Inc. Circuit Maze If each resistor has a resistance of 4  and each battery is a 4 V battery, what is the current flowing through the resistor labelled “R”? (a) 0 A (b) 2 A (c) 4 A (d) 8 A (e) 16 A

7 Copyright © 2009 Pearson Education, Inc. Circuit Maze If each resistor has a resistance of 4  and each battery is a 4 V battery, what is the current flowing through the resistor labelled “R”? (a) 0 A (b) 2 A (c) 4 A (d) 8 A (e) 16 A

8 ConcepTest 26.6ircuits ConcepTest 26.6Even More Circuits Which resistor has the greatest current going through it? Assume that all the resistors are equal. V R1R1 R2R2 R3R3 R5R5 R4R4 1) R 1 and 2) both R 1 and R 2 equally and 3) R 3 and R 4 4) R 5 5) all the same

9 I 1 = I 2 R 5 R 3 + R 4, branch containing R 5 has less resistance The same current must flow through the left and right combinations of resistors. On the LEFT, the current splits equally, so I 1 = I 2. On the RIGHT, more current will go through R 5 than R 3 + R 4, since the branch containing R 5 has less resistance. ConcepTest 26.6ircuits ConcepTest 26.6Even More Circuits 1) R 1 and 2) both R 1 and R 2 equally and 3) R 3 and R 4 4) R 5 5) all the same Which resistor has the greatest current going through it? Assume that all the resistors are equal. V R1R1 R2R2 R3R3 R5R5 R4R4 Follow-up: ? Follow-up: Which one has the smallest voltage drop?

10 ConcepTest 26.8aLightbulbs Two lightbulbs operate at 120 V, but one has a power rating of 25 W while the other has a power rating of 100 W. Which one has the greater resistance? 1) the 25 W bulb 2) the 100 W bulb 3) both have the same 4) this has nothing to do with resistance

11 P = V 2 / R, lower power ratinghigher resistance Since P = V 2 / R, the bulb with the lower power rating has to have the higher resistance. ConcepTest 26.8aLightbulbs Two lightbulbs operate at 120 V, but one has a power rating of 25 W while the other has a power rating of 100 W. Which one has the greater resistance? 1) the 25 W bulb 2) the 100 W bulb 3) both have the same 4) this has nothing to do with resistance Follow-up: Which one carries the greater current?

12 Copyright © 2009 Pearson Education, Inc. Some circuits cannot be broken down into series and parallel connections. For these circuits we use Kirchhoff’s rules. 26-3 Kirchhoff’s Rules

13 Copyright © 2009 Pearson Education, Inc. Junction rule: The sum of currents entering a junction equals the sum of the currents leaving it (i.e., charge does not pile up). 26-3 Kirchhoff’s Rules

14 Copyright © 2009 Pearson Education, Inc. Loop rule: The sum of the changes in potential around a closed loop is zero. 26-3 Kirchhoff’s Rules

15 Copyright © 2009 Pearson Education, Inc. Problem Solving: Kirchhoff’s Rules 1. Label each current, including its direction; don’t worry if you get the direction wrong. The math will take care of it. 2. Identify unknowns. 3. Apply junction and loop rules; you will need as many independent equations as there are unknowns. Each new equation MUST include a new variable. 4.Solve the equations, being careful with signs. If the solution for a current is negative, that current is in the opposite direction from the one you have chosen. 26-3 Kirchhoff’s Rules

16 Copyright © 2009 Pearson Education, Inc. 26-3 Kirchhoff’s Rules Example: Using Kirchhoff’s rules. a)Calculate the currents (call them I 1, I 2, and I 3 ) through the three batteries of the circuit in the figure. b)What is V a -V b ?

17 Copyright © 2009 Pearson Education, Inc. 26-3 Kirchhoff’s Rules Note: Potential change negative in specified direction of current. Potential change positive in specified direction opposite to current.

18 Copyright © 2009 Pearson Education, Inc. 26-3 Kirchhoff’s Rules

19 ConcepTest 26.12Kirchhoff’s Rules ConcepTest 26.12 Kirchhoff’s Rules 2 V 2  2 V 6 V 4 V 3  1  I1I1 I3I3 I2I2 Which of the equations is valid for the circuit below? 1) 2 – I 1 – 2I 2 = 0 2) 2 – 2I 1 – 2I 2 – 4I 3 = 0 3) 2 – I 1 – 4 – 2I 2 = 0 4) I 3 – 4 – 2I 2 + 6 = 0 5) 2 – I 1 – 3I 3 – 6 = 0

20 ConcepTest 26.12Kirchhoff’s Rules ConcepTest 26.12 Kirchhoff’s Rules 2 V 2  2 V 6 V 4 V 3  1  I1I1 I3I3 I2I2 Eq. 3 is valid for the left loop Eq. 3 is valid for the left loop: The left battery gives +2 V, then there is a drop through a 1  resistor with current I 1 flowing. Then we go through the middle battery (but from + to – !), which gives –4 V. Finally, there is a drop through a 2  resistor with current I 2. Which of the equations is valid for the circuit below? 1) 2 – I 1 – 2I 2 = 0 2) 2 – 2I 1 – 2I 2 – 4I 3 = 0 3) 2 – I 1 – 4 – 2I 2 = 0 4) I 3 – 4 – 2I 2 + 6 = 0 5) 2 – I 1 – 3I 3 – 6 = 0

21 Copyright © 2009 Pearson Education, Inc. EMFs in series in the same direction: total voltage is the sum of the separate voltages. 26-4 Series and Parallel EMFs; Battery Charging

22 Copyright © 2009 Pearson Education, Inc. EMFs in series, opposite direction: total voltage is the difference, but the lower- voltage battery is charged. 26-4 Series and Parallel EMFs; Battery Charging

23 Copyright © 2009 Pearson Education, Inc. EMFs in parallel only make sense if the voltages are the same; this arrangement can produce more current than a single emf. 26-4 Series and Parallel EMFs; Battery Charging

24 Copyright © 2009 Pearson Education, Inc. When the switch is closed, the capacitor will begin to charge. As it does, the voltage across it increases, and the current through the resistor decreases. 26-5 Circuits Containing Resistor and Capacitor (RC Circuits)

25 Copyright © 2009 Pearson Education, Inc. 26-5 Circuits Containing Resistor and Capacitor (RC Circuits) To find the voltage as a function of time, we write the equation for the voltage changes around the loop: Since Q = dI/dt, we can integrate to find the charge as a function of time:

26 Copyright © 2009 Pearson Education, Inc. 26-5 Circuits Containing Resistor and Capacitor (RC Circuits) The voltage across the capacitor is V C = Q/C : The quantity RC that appears in the exponent is called the time constant of the circuit:

27 Copyright © 2009 Pearson Education, Inc. 26-5 Circuits Containing Resistor and Capacitor (RC Circuits) Example 26-11: RC circuit, with emf. The capacitance in the circuit shown is C = 0.30 μ F, the total resistance is 20 kΩ, and the battery emf is 12 V. Determine (a) the time constant, (b) the maximum charge the capacitor could acquire, (c) the time it takes for the charge to reach 99% of this value, (d) the current I when the charge Q is half its maximum value, (e) the maximum current, and (f) the charge Q when the current I is 0.20 its maximum value.

28 Copyright © 2009 Pearson Education, Inc. If an isolated charged capacitor is connected across a resistor, it discharges: 26-5 Circuits Containing Resistor and Capacitor (RC Circuits) Capacitor, NOT battery!

29 Copyright © 2009 Pearson Education, Inc. 26-5 Circuits Containing Resistor and Capacitor (RC Circuits) Example 26-12: Discharging RC circuit. In the RC circuit shown, the battery has fully charged the capacitor, so Q 0 = C E. Then at t = 0 the switch is thrown from position a to b. The battery emf is 20.0 V, and the capacitance C = 1.02 μF. The current I is observed to decrease to 0.50 of its initial value in 40 μs. (a) What is the value of Q, the charge on the capacitor, at t = 0? (b) What is the value of R ? (c) What is Q at t = 60 μs?

30 Copyright © 2009 Pearson Education, Inc. 26-5 Circuits Containing Resistor and Capacitor (RC Circuits) Conceptual Example 26-13: Bulb in RC circuit. In the circuit shown, the capacitor is originally uncharged. Describe the behavior of the lightbulb from the instant switch S is closed until a long time later.

31 Copyright © 2009 Pearson Education, Inc. Most people can “feel” a current of 1 mA; a few mA of current begins to be painful. Currents above 10 mA may cause uncontrollable muscle contractions, making rescue difficult. Currents around 100 mA passing through the torso can cause death by ventricular fibrillation. Higher currents may not cause fibrillation, but can cause severe burns. Household voltage can be lethal if you are wet and in good contact with the ground. Be careful! 26-6 Electric Hazards

32 Copyright © 2009 Pearson Education, Inc. A person receiving a shock has become part of a complete circuit. 26-6 Electric Hazards

33 Copyright © 2009 Pearson Education, Inc. The safest plugs are those with three prongs; they have a separate ground line. Here is an example of household wiring – colors can vary, though! Be sure you know which is the hot wire before you do anything. 26-6 Electric Hazards

34 Copyright © 2009 Pearson Education, Inc. An ammeter measures current; a voltmeter measures voltage. Both are based on galvanometers, unless they are digital. The current in a circuit passes through the ammeter; the ammeter should have low resistance so as not to affect the current. 26-7 Am-, Volt-, and Ohm-meters

35 Copyright © 2009 Pearson Education, Inc. 26-7 Am-, Volt-, and Ohm-meters Example 26-15: Ammeter design. Design an ammeter to read 1.0 A at full scale using a galvanometer with a full-scale sensitivity of 50 μA and a resistance r = 30 Ω. Check if the scale is linear.

36 Copyright © 2009 Pearson Education, Inc. A voltmeter should not affect the voltage across the circuit element it is measuring; therefore its resistance should be very large. 26-7 Am-, Volt-, and Ohm-meters

37 Copyright © 2009 Pearson Education, Inc. 26-7 Am-, Volt-, and Ohm-meters Example 26-16: Voltmeter design. Using a galvanometer with internal resistance 30 Ω and full-scale current sensitivity of 50 μA, design a voltmeter that reads from 0 to 15 V. Is the scale linear?

38 Copyright © 2009 Pearson Education, Inc. Summary: An ammeter must be in series with the current it is to measure; a voltmeter must be in parallel with the voltage it is to measure. 26-7 Am-, Volt-, and Ohm-meters

39 Copyright © 2009 Pearson Education, Inc. An ohmmeter measures resistance; it requires a battery to provide a current. 26-7 Am-, Volt-, and Ohm-meters

40 Copyright © 2009 Pearson Education, Inc. A source of emf transforms energy from some other form to electrical energy. A battery is a source of emf in parallel with an internal resistance. Resistors in series: Summary of Chapter 26

41 Copyright © 2009 Pearson Education, Inc. Resistors in parallel: Kirchhoff’s rules: 1.Sum of currents entering a junction equals sum of currents leaving it. 2.Total potential difference around closed loop is zero. Summary of Chapter 26

42 Copyright © 2009 Pearson Education, Inc. RC circuit has a characteristic time constant: To avoid shocks, don’t allow your body to become part of a complete circuit. Ammeter: measures current. Voltmeter: measures voltage. Summary of Chapter 26

43 Copyright © 2009 Pearson Education, Inc. Questions?


Download ppt "Copyright © 2009 Pearson Education, Inc. Chapter 26 DC Circuits."

Similar presentations


Ads by Google